数据预处理包括数据的缺失值处理、标准化、规范化和离散化处理。

数据的缺失值处理:weka.filters.unsupervised.attribute.ReplaceMissingValues 对于数值属性,用平均值代替缺失值,对于nominal属性,用它的mode(出现最多的值)来代替缺失值。

标准化(standardize):类weka.filters.unsupervised.attribute.Standardize。标准化给定数据集中所有数值属性的值到一个0均值和单位方差的正态分布。

规范化(Nomalize):类weka.filters.unsupervised.attribute.Normalize。规范化给定数据集中的所有数值属性值,类属性除外。结果值默认在区间[0,1],但是利用缩放和平移参数,我们能将数值属性值规范到任何区间。如:但scale=2.0,translation=-1.0时,你能将属性值规范到区间[-1,+1]。

离散化(discretize):类weka.filters.supervised.attribute.Discretize和weka.filters.unsupervised.attribute.Discretize。分别进行监督和无监督的数值属性的离散化,用来离散数据集中的一些数值属性到分类属性。

转载自:http://blog.csdn.net/hunauchenym/article/details/5847314

WEKA中的数据预处理的更多相关文章

  1. sklearn中的数据预处理和特征工程

    小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...

  2. 机器学习实战基础(八):sklearn中的数据预处理和特征工程(一)简介

    1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字 ...

  3. 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介

    当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...

  4. 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值

    缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...

  5. 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化

    1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...

  6. matlab、sklearn 中的数据预处理

    数据预处理(normalize.scale) 0. 使用 PCA 降维 matlab: [coeff, score] = pca(A); reducedDimension = coeff(:,1:5) ...

  7. 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤

    相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...

  8. 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤

    Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...

  9. 机器学习实战基础(十二):sklearn中的数据预处理和特征工程(五) 数据预处理 Preprocessing & Impute 之 处理分类特征:处理连续性特征 二值化与分段

    处理连续性特征 二值化与分段 sklearn.preprocessing.Binarizer根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量.大于阈值的值映射为1,而小于或等于阈值的值 ...

随机推荐

  1. js 添加css属性

    $(".active").css('border','1px solid #ddd')curLi.css('border','2px solid red')curLi.css('b ...

  2. 基于对象的跨表查询,多对多查询,多对多操作,聚合查询和分组查询,F查询和Q 查询

    基于对象的跨表查询 一对多查询(班级表和学生表) 表结构创建 class Class(models.Model): id = models.AutoField(primary_key=True) cn ...

  3. 我们为什么使用ORM

    我们为什么使用ORM? http://www.cnblogs.com/tansm/archive/2006/06/07/419927.html 博客园在推广ORM方面的确做了很大的贡献,很多的程序员开 ...

  4. is和==

    ==判断两个对象值是否相等 is表示两个变量是否指向一块对象

  5. iOS 调整图片尺寸,告诉你的UI,别问我尺寸!我要最大的

    如果UI问你“这个图片你要多大尺寸的?”,你该怎么回答呢? 为了不让图片因拉伸或压缩而变形或模糊,请精确告诉UI图片的比例,至于图片的分辨率,不必要要求太严,但是最低要求是要让最大的屏幕不会出现前面描 ...

  6. Hive2.2.1概述(待重写)

    概述 hive 是一个包裹着 hdfs 的壳子,hive 通过 hql,将 sql 翻译成 MR ,进行数据查询. Hive是⼀个构建在Hadoop之上的数据仓库 hive的数据存在hdfs上,元信息 ...

  7. [转]浅谈Hive vs. HBase 区别在哪里

    浅谈Hive vs. HBase 区别在哪里 导读:Apache Hive是一个构建于Hadoop(分布式系统基础架构)顶层的数据仓库,Apache HBase是运行于HDFS顶层的NoSQL(=No ...

  8. Secondary ,Supplementary alignment 和bwa mem的-M -Y参数

    1.supplementary alignment supplementary alignment是指一条read的一部分和参考区域1比对成功,另一部分和参考区域2比对成功,参考区域1和参考区域2没有 ...

  9. UIScrollView监听静止的数种情况

    1.直接通过block -(void)testInBlock { //通过block监听 [UIView animateWithDuration:1.0 animations:^{ self.scro ...

  10. 《React-Native系列》RN与native交互与数据传递

    RN怎么与native交互的呢? 下面我们通过一个简单的Demo来实现:RN页面调起Native页面,Native页面选择电话本数据,将数据回传给RN展示. 首先是 Native侧 1.MainAct ...