WEKA中的数据预处理
数据预处理包括数据的缺失值处理、标准化、规范化和离散化处理。
数据的缺失值处理:weka.filters.unsupervised.attribute.ReplaceMissingValues。 对于数值属性,用平均值代替缺失值,对于nominal属性,用它的mode(出现最多的值)来代替缺失值。
标准化(standardize):类weka.filters.unsupervised.attribute.Standardize。标准化给定数据集中所有数值属性的值到一个0均值和单位方差的正态分布。
规范化(Nomalize):类weka.filters.unsupervised.attribute.Normalize。规范化给定数据集中的所有数值属性值,类属性除外。结果值默认在区间[0,1],但是利用缩放和平移参数,我们能将数值属性值规范到任何区间。如:但scale=2.0,translation=-1.0时,你能将属性值规范到区间[-1,+1]。
离散化(discretize):类weka.filters.supervised.attribute.Discretize和weka.filters.unsupervised.attribute.Discretize。分别进行监督和无监督的数值属性的离散化,用来离散数据集中的一些数值属性到分类属性。
转载自:http://blog.csdn.net/hunauchenym/article/details/5847314
WEKA中的数据预处理的更多相关文章
- sklearn中的数据预处理和特征工程
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...
- 机器学习实战基础(八):sklearn中的数据预处理和特征工程(一)简介
1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字 ...
- 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介
当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...
- 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...
- 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...
- matlab、sklearn 中的数据预处理
数据预处理(normalize.scale) 0. 使用 PCA 降维 matlab: [coeff, score] = pca(A); reducedDimension = coeff(:,1:5) ...
- 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤
相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...
- 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤
Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...
- 机器学习实战基础(十二):sklearn中的数据预处理和特征工程(五) 数据预处理 Preprocessing & Impute 之 处理分类特征:处理连续性特征 二值化与分段
处理连续性特征 二值化与分段 sklearn.preprocessing.Binarizer根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量.大于阈值的值映射为1,而小于或等于阈值的值 ...
随机推荐
- 初识JS 基本语法.基本运算符
JavaScript概述 JavaScript的历史 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中).后将其改名ScriptEase.( ...
- Linux Shell编程第4章——sed和awk
目录 sed命令基本用法 sed命令实例 命令选项 文本定位 编辑命令 awk编程模型 awk编程实例 1.awk模式匹配 2.记录和域 3.关系和布尔运算符 4.表达式 5.系统变量 6.格式化输出 ...
- sortable实现拖拽功能
使用sortable这个强力插件就很容易实现拖拽功能,它是目前比较牛逼的拖拽插件,无需jquery,就可以全面支持pc和移动,参考以下github文档就有很详细的说明,也给了很多 demo,插件就用我 ...
- HDU - 6315 Naive Operations (线段树+思维) 2018 Multi-University Training Contest 2
题意:数量为N的序列a和b,a初始全为0,b为给定的1-N的排列.有两种操作:1.将a序列区间[L,R]中的数全部+1:2.查询区间[L,R]中的 ∑⌊ai/bi⌋(向下取整) 分析:对于一个位置i, ...
- linux 文本分析工具---awk命令(7/1)
awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再进行各 ...
- 【JavaScript】满天星
参考: 1.http://www.w3school.com.cn/tags/canvas_filltext.asp 2.产生随机数:http://www.cnblogs.com/banbu/archi ...
- jQuery上下切换带缩略图的焦点图
在线演示 本地下载
- Windows Server 2008 R2 FTP无法从外部访问的解决方法
在Windows Server 2008 R2中配置好FTP服务器后,可以在本机访问,但是无法从另一台电脑访问.原因就是在于防火墙没有配置好. 1.首先检查服务器管理器中的入站规则,确保已启用FTP服 ...
- JavaWeb JavaScript
1.JavaScript概述 JavaScript是一种基于对象和事件驱动的脚本语言,原名叫做livescript.W3c组织开发的标准叫ECMAscipt 1.1JavaScript和Java的一些 ...
- LAMP脚本
A goal is a dream with a deadline. Much effort, much prosperity. 环境:CentOS release 6.5 2.6.32-431.e ...