Description

给定一个长度为 \(n\) 的小括号序列,求有多少个位置满足将这个位置的括号方向反过来后使得新序列是一个合法的括号序列。即在任意一个位置前缀左括号的个数不少于前缀右括号的个数,同时整个序列左右括号个数相同

Input

第一行是一个整数 \(n\) 代表序列长度

下面一行是括号序列

Output

输出一行一个数字代表的答案

Hint

\(1~\leq~n~\leq~10^6\)

Solution

考虑一个位置,如果是左括号,那么能将其变成右括号当且仅当:

整个序列左括号个数比右括号多 \(2\)

在这个位置之前,所有位置的前缀左括号个数都不少于前缀右括号个数

在这个位置和这个位置之后,在修改后所有位置的前缀左括号个数都不少于前缀右括号个数

我们将第三条转化一下,由于在修改之后左括号个数减一,右括号个数加一,于是我们可以将第三条改为

在这个位置和这个位置之后,修改前所有位置的前缀左括号个数都比前缀右括号个数至少多两个

这样一个位置能不能修改就仅与原序列有关了。

若果是右括号,也同理进行分析,将两个改为 \(-2\) 个即可。

于是我们处理一下前缀左括号个数-右括号个数。

考虑第二条限制,等价于 \([1,pos]\) 这些前缀中的最小值不小于 \(0\)。于是我们对这些前缀求一个前缀最小值,就可以做到 \(O(1)\) 判断了。

对于第三条限制,等价于 \([pos,n]\) 这些前缀中的最小值不小于 \(2\)。于是我们对这些前缀求一个后缀最小值,也可以做到 \(O(1)\) 判断了。

这个位置是右括号的情况同理。细节参考代码

Code

#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
} template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
} template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
} namespace OPT {
char buf[120];
} template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
} const int maxn = 1000010; int n, ans;
int cnt[maxn], pre[maxn], post[maxn];
char MU[maxn]; int main() {
freopen("1.in", "r", stdin);
qr(n);
for (rg int i = 1; i <= n; ++i) {
do {MU[i] = IPT::GetChar();} while ((MU[i] != '(') && (MU[i] != ')'));
if (MU[i] == '(') cnt[i] = cnt[i - 1] + 1;
else cnt[i] = cnt[i - 1] - 1;
}
if ((cnt[n] != 2) && (cnt[n] != -2)) return puts("0") & 1;
pre[0] = maxn; post[n + 1] = maxn;
for (rg int i = 1; i <= n; ++i) pre[i] = std::min(pre[i - 1], cnt[i]);
for (rg int i = n; i; --i) post[i] = std::min(post[i + 1], cnt[i]);
for (rg int i = 1; i <= n; ++i) {
if (MU[i] == '(') {
if ((cnt[n] == 2) && (post[i] >= 2) && (pre[i - 1] >= 0)) ++ans;
} else {
if ((cnt[n] == -2) && (post[i] >= -2) && (pre[i - 1] >= 0)) ++ans;
}
}
qw(ans, '\n', true);
return 0;
}

【乱搞】【CF1095E】 Almost Regular Bracket Sequence的更多相关文章

  1. CF1095E Almost Regular Bracket Sequence

    题目地址:CF1095E Almost Regular Bracket Sequence 真的是尬,Div.3都没AK,难受QWQ 就死在这道水题上(水题都切不了,我太菜了) 看了题解,发现题解有错, ...

  2. E. Almost Regular Bracket Sequence 解析(思維)

    Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...

  3. Educational Codeforces Round 4 C. Replace To Make Regular Bracket Sequence 栈

    C. Replace To Make Regular Bracket Sequence 题目连接: http://www.codeforces.com/contest/612/problem/C De ...

  4. Codeforces Beta Round #5 C. Longest Regular Bracket Sequence 栈/dp

    C. Longest Regular Bracket Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.c ...

  5. Replace To Make Regular Bracket Sequence

    Replace To Make Regular Bracket Sequence You are given string s consists of opening and closing brac ...

  6. D - Replace To Make Regular Bracket Sequence

    You are given string s consists of opening and closing brackets of four kinds <>, {}, [], (). ...

  7. CodeForces - 612C Replace To Make Regular Bracket Sequence 压栈

    C. Replace To Make Regular Bracket Sequence time limit per test 1 second memory limit per test 256 m ...

  8. (CodeForces - 5C)Longest Regular Bracket Sequence(dp+栈)(最长连续括号模板)

    (CodeForces - 5C)Longest Regular Bracket Sequence time limit per test:2 seconds memory limit per tes ...

  9. 贪心+stack Codeforces Beta Round #5 C. Longest Regular Bracket Sequence

    题目传送门 /* 题意:求最长括号匹配的长度和它的个数 贪心+stack:用栈存放最近的左括号的位置,若是有右括号匹配,则记录它们的长度,更新最大值,可以在O (n)解决 详细解释:http://bl ...

  10. Almost Regular Bracket Sequence CodeForces - 1095E (线段树,单点更新,区间查询维护括号序列)

    Almost Regular Bracket Sequence CodeForces - 1095E You are given a bracket sequence ss consisting of ...

随机推荐

  1. and_or_not 逻辑运算符的操作注解!

    python操作:

  2. spark RDD、DataFrame、DataSet之间的相互转化

    这三个数据集看似经常用,但是真正归纳总结的时候,很容易说不出来 三个之间的关系与区别参考我的另一篇blog  http://www.cnblogs.com/xjh713/p/7309507.html ...

  3. 团队Alpha冲刺(八)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...

  4. 福大软工1816:Alpha事后诸葛

    福大软工·第十一次作业-Alpha事后诸葛亮 组长博客链接 本次作业博客链接 项目Postmortem 模板 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描 ...

  5. C语言的调查

    1.你对自己的未来有什么规划?做了哪些准备?从事跟本专业相关的工作.认真学习好书本的知识,并能很好的运用它. 2.你认为什么是学习?学习有什么用?现在学习动力如何?为什么?学习可以让自己懂得更多,完善 ...

  6. Alpha阶段敏捷冲刺 ADY8

    一.举行站立式例会 今天也没有拍照片,人不齐. 二.团队报告 1.昨日已完成的工作 (1)创建一个test,并且将图片导入进去使其可以显示. 2.今日计划完成的工作 完成收尾工作.实现代码的连接. 3 ...

  7. 小程序解密 encryptedData 获取 unionID 等信息

    index.php <?php include_once "wxBizDataCrypt.php"; // $appid 由小程序微信官方后台获取 $appid = 'wx4 ...

  8. 新手必备!11个强大的 Visual Studio 调试技巧

    简介 调试是软件开发周期中很重要的一部分.它具有挑战性,同时也很让人疑惑和烦恼.总的来说,对于稍大一点的程序,调试是不可避免的.最近几年,调试工具的发展让很多调试任务变的越来越简单和省时. 这篇文章总 ...

  9. phpcms 思维导图

    原文地址 : https://www.cnblogs.com/fuyunbiyi/archive/2012/03/12/2391253.html

  10. 【转】MySQL数据表中记录不存在则插入,存在则更新

    mysql 记录不存在时插入在 MySQL 中,插入(insert)一条记录很简单,但是一些特殊应用,在插入记录前,需要检查这条记录是否已经存在,只有当记录不存在时才执行插入操作,本文介绍的就是这个问 ...