triplet loss 在深度学习中主要应用在什么地方?有什么明显的优势?
链接:https://www.zhihu.com/question/62486208/answer/199117070
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
反对工业界softmax解决一切的说法
Triplet loss通常是在个体级别的细粒度识别上使用,传统的分类是花鸟狗的大类别的识别,但是有些需求是要精确到个体级别,比如精确到哪个人的人脸识别,所以triplet loss的最主要应用也就是face identification,person re-identification,vehicle re-identification的各种identification识别问题上
- 当然你可以把每个人当做一个类别来进行分类训练,但是往往最后会造成softmax的维数远大于feature的维数,想想resnet50 global ap出来一个2048的feature对应到一个几万,几十万的分类softmax就可怕。
- 另外一个结论就是triplet loss通常能比classification得到更好的feature,我个人测试triplet loss至少比classification高10个点。
- 还有一个优点就是triplet loss 可以卡阈值,triplet loss训练的时候要设置一个margin,这个margin可以控制正负样本的距离,当feature 进行normalization之后,可以更加方便的卡个阈值来判断是不是同一个ID
当然triplet loss也有缺点,就是收敛慢,而且比classification更容易overfitting(此条待考究,并且即使过拟合了也比classification性能要好),此外需要对输入的数据按照label进行特别的排列,非常重要的一点是没有triplet loss的API,新手小白可能连十行代码都不到的triplet loss都写不出来,所以deep learning不只是调库调参而已
现在triplet loss已经有很多改进版本了,可以搜索improved triplet loss, in defense of triplet loss,beyond triplet loss等论文
triplet loss 在深度学习中主要应用在什么地方?有什么明显的优势?的更多相关文章
- 从极大似然估计的角度理解深度学习中loss函数
从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于 ...
- 深度学习中的Data Augmentation方法(转)基于keras
在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...
- 深度学习中的Normalization模型
Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize ...
- [优化]深度学习中的 Normalization 模型
来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出 ...
- 【转载】深度学习中softmax交叉熵损失函数的理解
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning 版权声明:本文为博主原 ...
- 深度学习中正则化技术概述(附Python代码)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 磐石 介绍 数据科学研究者们最常遇见的问题之一就是怎样避免过拟合. ...
- 深度学习中常见的 Normlization 及权重初始化相关知识(原理及公式推导)
Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新 ...
- 深度学习中优化【Normalization】
深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization? 深度神经网络模型的训练为什么会很困难?其中一个重 ...
- 深度学习中dropout策略的理解
现在有空整理一下关于深度学习中怎么加入dropout方法来防止测试过程的过拟合现象. 首先了解一下dropout的实现原理: 这些理论的解释在百度上有很多.... 这里重点记录一下怎么实现这一技术 参 ...
随机推荐
- docker删除镜像和删除容器
删除容器:docker rm ID 删除镜像:docker rmi ID
- RDIFramework.NET ━ .NET快速信息化系统开发框架 V3.2-模块管理按子系统进行分类管理
在RDIFramework.NET以往的框架中,模块管理界面展示了整个框架所管理的所有模块,如果系统过多,达几十个甚至上百个子系统时,管理起来就非常的麻烦,不光加载效率会很低,页面展示也会很不友好.框 ...
- 全图化引擎(AI·OS)中的编译技术
全图化引擎又称算子执行引擎,它的介绍可以参考从HA3到AI OS -- 全图化引擎破茧之路.本文从算子化的视角介绍了编译技术在全图化引擎中的运用.主要内容有: 1. 通过脚本语言扩展通用算子上的用户订 ...
- 巨杉数据库入选Gartner数据库报告,中国首家入选厂商
SequoiaDB巨杉数据库入选Gartner数据库报告,成为国内首批入选Gartner报告的数据库厂商. “SequoiaDB, 总部位于中国广州,是一款分布式.多模型(Multimodel).高可 ...
- Springboot 系列(一)Spring Boot 入门篇
注意:本 Spring Boot 系列文章基于 Spring Boot 版本 v2.1.1.RELEASE 进行学习分析,版本不同可能会有细微差别. 前言 由于 J2EE 的开发变得笨重,繁多的配置, ...
- docker修改国内官方镜像
在正常情况下,docker有一个默认连接的国外官方镜像,在国外的网友访问该官方镜像自然不成问题,但是国内毕竟不是国外,由于国情不同,中国的网络访问国外官方镜像网速一向很慢,而且往往还会遭遇断网的窘境, ...
- PhpStudy升级MySQL5.7
PhpStudy2017集成环境中的mysql数据库的版本默认是mysql5.5,下面是PhpStudy升级数据库到mysql5.7的方法: 1:备份当前数据库数据,可以导出数据库文件,作为备份,我这 ...
- PHP实现微信随机红包算法和微信红包的架构设计简介
微信红包的架构设计简介: 原文:https://www.zybuluo.com/yulin718/note/93148 @来源于QCon某高可用架构群整理,整理朱玉华. 背景:有某个朋友在朋友圈咨询微 ...
- OpenTK学习笔记
OpenGL定义 OpenGL被定义为"图形硬件的一种软件接口".实质上是3D图形和模型库,具有高度可移植性,具有非常快的速度. OpenGL架构 术语pipeline常用于阐述彼 ...
- 关于Keychain
1.Keychain 浅析 2.iOS的密码管理系统 Keychain的介绍和使用 3.iOS开发中,唯一标识的解决方案之keyChain+UUID