Convex combination
en.wikipedia.org/wiki/Convex_combination
凸组合
In convex geometry, a convex combination is a linear combination of points (which can be vectors, scalars, or more generally points in an affine space) where all coefficients are non-negative and sum to 1.
More formally, given a finite number of points {\displaystyle x_{1},x_{2},\dots ,x_{n}} in a real vector space, a convex combination of these points is a point of the form
- {\displaystyle \alpha _{1}x_{1}+\alpha _{2}x_{2}+\cdots +\alpha _{n}x_{n}}
where the real numbers {\displaystyle \alpha _{i}} satisfy {\displaystyle \alpha _{i}\geq 0}
and {\displaystyle \alpha _{1}+\alpha _{2}+\cdots +\alpha _{n}=1.}
As a particular example, every convex combination of two points lies on the line segment between the points.
The convex hull of the given points is identical to the set of all their convex combinations.
There exist subsets of a vector space that are not closed under linear combinations but are closed under convex combinations. For example, the interval {\displaystyle [0,1]} is convex but generates the real-number line under linear combinations. Another example is the convex set of probability distributions, as linear combinations preserve neither nonnegativity nor affinity (i.e., having total integral one).
Convex combination的更多相关文章
- Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记
The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...
- Attention and Augmented Recurrent Neural Networks
Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sep ...
- Regularized Linear Regression with scikit-learn
Regularized Linear Regression with scikit-learn Earlier we covered Ordinary Least Squares regression ...
- (转)Awesome PyTorch List
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...
- Visual Question Answering with Memory-Augmented Networks
Visual Question Answering with Memory-Augmented Networks 2018-05-15 20:15:03 Motivation: 虽然 VQA 已经取得 ...
- (zhuan) Attention in Neural Networks and How to Use It
Adam Kosiorek About Attention in Neural Networks and How to Use It this blog comes from: http://akos ...
- Linear and Quadratic Programming Solver ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Which Programs can be Solved? This package lets you solve convex quadratic programs of the general ...
- 优化中的subgradient方法
哎.刚刚submit上paper比較心虚啊.无心学习.还是好好码码文字吧. subgradient介绍 subgradient中文名叫次梯度.和梯度一样,全然能够多放梯度使用.至于为什么叫子梯度,是由 ...
- ICLR 2014 International Conference on Learning Representations深度学习论文papers
ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...
随机推荐
- ECSHOP搜索框文字点击消失
<input name="keywords" type="text" id="keyword" value="黄山金银币&q ...
- 2017.7.21 linux下进程管理工具supervisord的安装与使用
参考来自:http://blog.haohtml.com/archives/15145 0 操作环境 1 supervisord的介绍 Supervisord是用Python实现的一款非常实用的进程管 ...
- Java List序列化的实现
概述 java中的序列化与反序列化都要求对象实现Serializable接口(其实就是声明一下),而对于List这种动态改变的集合默认是不实现这个接口的,也就是不能直接序列化.但是数组是可以序列化的, ...
- 数据存储之iOS断点续传
iOS里面实现断点续传 第三方框架之AFN 代码实现 一.iOS里面实现断点续传 1⃣️AFN基于NSURL 1.性能和稳定性略差.针对JSON.XML.Plist和Image四种数据结构封装了各自处 ...
- 谈一谈Http Request 与Http Response
1.什么是HTTPRequest与HTTP Response? 我们平时打开浏览器,输入网址,点击Enter按键,然后我们想要的网页就呈现在我们的眼前,可是这个过程是怎么实现的呢? 简单来说是这样的: ...
- css 猫头鹰选择器
除了第一个以外的兄弟选择器.由于看起来像猫头鹰,也叫猫头鹰选择器 .TD-Breadcrumb > li + li:before { padding: 0 5px; color: #ccc; c ...
- killall 命令
Linux系统中的killall命令用于杀死指定名字的进程(kill processes by name).我们可以使用kill命令杀死指定进程PID的进程,如果要找到我们需要杀死的进程,我们还需要在 ...
- PorterDuffXferMode不对的真正原因PorterDuffXferMode深入试验)
菜鸡wing遇敌PorterDuffXferMode,不料过于轻敌,应战吃力. 随后与其大战三天三夜.三百余回合不分胜负. 幸得 @咪咪控 相助,侥幸获胜. keyword:PorterDuffXfe ...
- 交换两个变量的值不使用第三个变量(Java)
关于这个问题网上有好多答案,最近有人说这是个奇葩问题 个人测试了一把,如果是普通的数字的话,基本上没有问题 public static void main(String[] args) { int a ...
- ACE_Svc_Handler 通信原理
ACE作为通讯方面的开源架构,不但用c++实现,而且用JAVA实作的架构已经可以使用了,由此看来掌握ACE成为每歌开发通讯程序的程序员的必备技能. ACE的库分为4个层次: OS适配层该层将ACE的较 ...