z

你没有发现两个字里的blog都不一样嘛 qwq

题目描述-->P1412 经营与开发

分析

虽然看到\(Rank_1\)已经有了解释.

但我认为我能BB的更好

我还是决定来写一篇题解. qwq

列式

根据题意,我们很容易列出式子.(瞎j8写.

(变量名与题目描述相同.

\(a_1 \times w+ (1-0.01 \times k)\times w \times a_2+(1-0.01 \times k)\times w\times(1-0.01\times k)\times a_3+\dots\)

其中\((1-0.01 \times k)\times w\)代表新的能力值.

提取公因式\(w\). (是叫公因式还是公因子?,qwq

新式子

\(w\times[a_1+ (1-0.01 \times k) \times a_2+(1-0.01 \times k)\times(1-0.01\times k)\times a_3+\dots]\)

然后又可以写成这种形式.

\(w\times[a_1+ (1-0.01 \times k) \times a_2+(1-0.01 \times k)^2\times a_3+\dots]\)

再将\([]\)中的式子变形(根据秦九韶算法.

得到这样的式子

\(w\times[a_1+ (1-0.01 \times k) \times (a_2+(1-0.01 \times k)\times a_3+\dots)]\)

然后根据秦九韶一直拆下去.

(下面以\(k^{'}\)代表\((1-0.01\times k)\)

所以我们会得到这样的式子.

\(w*[a_1+k^{'}\times(a_2+k{'}\times(a_3+k{'}\times (a_4+\dots)))]\)

然后写出来好长好长一段 qwq.

然后考虑正解为什么是倒着枚举?.

显然,我们从\(1-n\)枚举星球,钻头会受到影响.

即后面的答案会受到影响.(后效性.

而我们从后向前枚举则可以免去这种影响.(感觉这句话自己说的很虚啊.

如果不理解这句话的话,请回想秦九韶算法也是从里到外地求解.

对应到这个题的话我们就相当于从后向前枚举.

因为秦九韶算法的话,从里到外的拆分会乘上\(k^{'}\).(钻头能力值会降低.

简单来讲的话

我们通过一直乘上\(k^{'}\),最里层的式子,对应的就是我们最后一次使用钻头的情况.

同样,次里层的式子,对应的就是我们倒数第二次使用钻头的情况.

(无法正确组织语言. qwq.

如果不懂的话还是用笔试一下.

这样我们模拟的就是这个从里向外求解的过程.

所以我们求出来的一定会是我们的答案.

------------------代码-------------------

#include<bits/stdc++.h>
#define R register
using namespace std;
int n;
double k,c,w;
struct cod{int idx;double cost;}type[100008];
double ans;
int main()
{
scanf("%d%lf%lf%lf",&n,&k,&c,&w);
k=1-0.01*k;c=1+0.01*c;//我说我式子一开始带错了你信不信 qwq.
for(R int i=1;i<=n;i++)
scanf("%d%lf",&type[i].idx,&type[i].cost);
for(R int i=n;i>=1;i--)
if(type[i].idx==1)ans=max(ans,ans*k+type[i].cost);
else ans=max(ans,ans*c-type[i].cost);
printf("%.2lf",ans*w);
}

数学【p1412】 经营与开发(秦九韶算法)的更多相关文章

  1. 洛谷 P1412 经营与开发 解题报告

    P1412 经营与开发 题目描述 \(4X\)概念体系,是指在\(PC\)战略游戏中一种相当普及和成熟的系统概念,得名自4个同样以"\(EX\)"为开头的英语单词. \(eXplo ...

  2. P1412 经营与开发

    题目描述 4X概念体系,是指在PC战略游戏中一种相当普及和成熟的系统概念,得名自4个同样以“EX”为开头的英语单词. eXplore(探索) eXpand(拓张与发展) eXploit(经营与开发) ...

  3. luogu P1412 经营与开发 |dp

    题目描述 4X概念体系,是指在PC战略游戏中一种相当普及和成熟的系统概念,得名自4个同样以"EX"为开头的英语单词. eXplore(探索) eXpand(拓张与发展) eXplo ...

  4. 洛谷 P1412 经营与开发

    /* 粘一下开始写的暴力吧 虽然没啥价值 */ #include<iostream> #include<cstdio> #include<cstring> #inc ...

  5. 洛谷P1412 经营与开发题解

    题目链接QWQ这里就不阐述了: 题解部分: 从题面上来看,这是个dp(递推)的题目. 但是dp要满足无后效性,但这个题为了取最值,得考虑从当前开始一直持续到结束的p的影响. 这让我们怎么满足无后效性? ...

  6. 落谷 P1412 经营与开发

    题目链接 Solution 用传统的思想考虑正推,发现后面的答案依赖于当前的 \(p\),你不但要记录前 \(i\) 个还要记录 \(p\),显然空间爆炸. 类似 AcWing 300. 任务安排1, ...

  7. HUSTOJ:5500 && 洛谷:P1412:经营与开发

    题目描述 4X概念体系,是指在PC战略游戏中一种相当普及和成熟的系统概念,得名自4个同样以“EX”为开头的英语单词.eXplore(探索)eXpand(拓张与发展)eXploit(经营与开发)eXte ...

  8. 【贪心】经营与开发 @upc_exam_5500

    目录 经营与开发 @upc_exam_5500 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 SOLUTION CODE 经营与开发 @upc_exam_5500 PROBLEM 题 ...

  9. 基于SageMath的数学网站——本科毕业开发项目

    1 绪论 1.1研究背景 我国是一个拥有15亿人口的大国.其中,据2017年的统计,全国共有大学生2600万左右.如此数量众多的大学生,都会有着学习基础数理课程的需求.而在高校的数学教学中,教授最多最 ...

随机推荐

  1. CSS系列(8) CSS后代选择器和子选择器详解

    一.CSS后代选择器详解 1,  生动介绍基本概念 一个标签嵌B在另一个标签A内部,B就是A的后代. 而且,B的后代也是A的后代,这就叫“子子孙孙无穷尽也”. 比如: <div> < ...

  2. 基于Python的selenuim自动化测试尝试

    工作这么多年了,终于狠下心好好开始学学自动化测试相关知识,揭开这层神秘的面纱. 困难重重,障碍很多,但好在每天都多少有点小收获. 很感谢一个QQ好友推荐的虫师,也非常感谢在这个契机读到了虫师编著的&l ...

  3. 真的讨厌ClickOnce这东西

    ClickOnce真的问题多. 升级问题,每次升级后都新建一个文件夹,旧的程序数据全都没有.迁移过来也一堆问题.还有录音问题,Win7下录音报错,最后查来查去就是将文件路径太太长,要控制长度.还有安装 ...

  4. J2EE的十三种技术——JDBC

    背景: 之前准备软考的时候,我们就学习过J2SE的视频.在进入J2EE之前,一定要复习和回顾下Java的基础知识,这对以后的学习十分重要.首先,简单回忆下java的体系结构.Java有三个体系结构:J ...

  5. GCD 开发详情

    目录 一.简介 二.dispatch Queue - 队列 三.dispatch Groups - 组 四.dispatch Semaphores - 信号量 五.dispatch Barriers ...

  6. Android使用adb命令查看CPU信息

    Android中使用JNI编程的时候会需要编译出不同的SO文件,以供适配不同的机型. 例如: 由此需要查看不同机型的CPU信息. 使用ADB命令查看CPU信息命令如下: 1. adb shell 2. ...

  7. 2017 多校4 Dirt Ratio

    多校4 Dirt Ratio(二分+线段树) 题意: 给出n个数,找一段区间使得区间内不同数字个数除以区间长度最小,求这个最小值,\(n<=60000,a_i<=n\) 题解: 二分答案m ...

  8. BZOJ5299 [Cqoi2018]解锁屏幕 【状压dp】

    题目链接 BZOJ5299 题解 就一个毒瘤卡常题..写了那么久 设\(f[i][s]\)表示选了集合\(s\)中的点,最后一个是\(i\),进行转移 要先预处理出两点间的点,然后卡卡常就可以过了 # ...

  9. 电阻 (resistance)

    电阻 (resistance) 题目描述 每次小x物理作业没做完时,总是会去和老师交流感情,他们之间由此建立起来良好的师生关系.于是有一天,老师带着一道物理难题来见小x. 这道题给出了一个有n个电阻的 ...

  10. c语言数组传递

    转自:http://blog.csdn.net/xgmiao/article/details/9570825 点击打开链接 数组作为函数实参: C语言中数组作为函数实参时,编译器总是将其解析为指向数组 ...