题面

Description

某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上\(n\)个装置,每个装置设定初始弹力系数\(k_i\),当绵羊达到第\(i\)个装置时,它会往前弹\(k_i\)步,达到第\(i+k_i\)个装置,若不存在第\(i+k_i\)个装置,则绵羊被弹飞。绵羊想知道当它从第\(i\)个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。

Input

第一行包含一个整数\(n\),表示地上有\(n\)个装置,装置的编号从\(0\)到\(n-1\)。

接下来一行有\(n\)个正整数,依次为那\(n\)个装置的初始弹力系数。

第三行有一个正整数\(m\)。

接下来\(m\)行每行至少有两个数\(i,j\),若\(i=1\),你要输出从\(j\)出发被弹几次后被弹飞,若\(i=2\)则还会再输入一个正整数\(k\),表示第\(j\)个弹力装置的系数被修改成\(k\)。

Output

对于每个\(i=1\)的情况,你都要输出一个需要的步数,占一行。

Sample Input

4

1 2 1 1

3

1 1

2 1 1

1 1

Sample Output

2

3

Hint

对于20%的数据\(n,m\le 10000\);

对于100%的数据\(n\le 200000,m\le 100000\);


1.如何建树?

  • 若从这个点\(x\)会被弹飞,连边\((x,n+1)\)
  • 若从这个点\(x\)不会被弹飞,连边\((x,x+k_x)\)

根为\(\textbf{n+1}\)

以样例做例子:

2.如何询问?

为蛤哈?

由于splay是按深度关键字排序,所以根的左子树的大小就是要被弹几次了呀。

3.如何修改?

把原来的边删了在连新的不就完了吗……


代码

#include<iostream>
#include<cstdio>
using namespace std;
int ch[200002][2],fa[200002],siz[200002],num[200002],lazr[200002],cnt,n,q;
inline unsigned rd(){
unsigned re=0;
char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9'){
re=re*10+ch-'0';
ch=getchar();
}
return re;
}
inline bool isroot(int bt){return ch[fa[bt]][0]!=bt&&ch[fa[bt]][1]!=bt;}
inline int drct(int bt){return ch[fa[bt]][1]==bt;}
inline void pushup(int bt){siz[bt]=siz[ch[bt][0]]+siz[ch[bt][1]]+1;}
inline void reverse(int bt){swap(ch[bt][0],ch[bt][1]);lazr[bt]^=1;}
inline void pd(int bt){
if(lazr[bt]){
if(ch[bt][0])reverse(ch[bt][0]);
if(ch[bt][1])reverse(ch[bt][1]);
lazr[bt]=0;
}
}
inline void pushdown(int u){
if(!isroot(u))pushdown(fa[u]);
pd(u);
}
inline void rotate(int u){
int f=fa[u],g=fa[f],c=drct(u);
if(!isroot(f))ch[g][drct(f)]=u;
fa[u]=g;
ch[f][c]=ch[u][c^1];
if(ch[f][c])fa[ch[f][c]]=f;
ch[u][c^1]=f;
fa[f]=u;
pushup(f);
pushup(u);
}
void splay(int u){
pushdown(u);
while(!isroot(u)){
if(!isroot(fa[u]))rotate(drct(fa[u])==drct(u)?fa[u]:u);
rotate(u);
}
}
void access(int u){
for(int v=0;u;v=u,u=fa[u]){
splay(u);
ch[u][1]=v;
pushup(u);
}
}
void makeroot(int u){
access(u);
splay(u);
reverse(u);
}
void link(int a,int b){
makeroot(a);
fa[a]=b;
}
void cut(int a,int b){
makeroot(a);
access(b);
splay(b);
ch[b][0]=0;
fa[a]=0;
pushup(b);
}
int main(){
n=rd();
for(int i=1;i<=n;i++){
num[i]=rd();
siz[i]=1;
}
for(int i=1;i<=n;i++){
if(i+num[i]<=n)fa[i]=i+num[i];
else fa[i]=n+1;
}
q=rd();
for(int i=1;i<=q;i++){
int opt=rd(),x=rd()+1;
if(opt==1){
makeroot(n+1);
access(x);
splay(x);
printf("%d\n",siz[ch[x][0]]);
}else{
int y=rd();
if(x+num[x]<=n)cut(x,x+num[x]);
else cut(x,n+1);
num[x]=y;
if(x+num[x]<=n)link(x,x+num[x]);
else link(x,n+1);
}
}
}

[Link-Cut-Tree][BZOJ2002]弹飞绵羊的更多相关文章

  1. BZOJ-2002 弹飞绵羊 Link-Cut-Tree (分块)

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 6801 Solved: 3573 [Submi ...

  2. bzoj2002 弹飞绵羊

    Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置 ...

  3. bzoj2002 弹飞绵羊 lct版

    这道题就是维护一个有根的lct 一开始建树全部建虚边 求多少次弹出就是求他到根的距离(根为n+1) 这里有个小技巧 将n+1作为根而没有虚根操作起来会比较方便 #include<cstdio&g ...

  4. BZOJ2002弹飞绵羊

    动态树LCT模板题 #include<cstdio> #include<cctype> #include<algorithm> using namespace st ...

  5. bzoj2002 弹飞绵羊 分块

    这道题是分块的初尝试 讲给定的区间n进行分块处理 这个每次修改的复杂的只有logn 很方便 代码是学黄学长的 http://hzwer.com/3505.html 当然里面还是有一定我自己的想法在里面 ...

  6. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 (动态树LCT)

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2843  Solved: 1519[Submi ...

  7. [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree)

    [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree) 题面 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一 ...

  8. 【BZOJ 2002】【Hnoi 2010】弹飞绵羊 分块||Link Cut Tree 两种方法

    ShallWe,Yveh,hmy,DaD3zZ,四人吃冰糕从SLYZ超市出来后在马路上一字排开,,,吃完后发现冰糕棍上写着:“向狮子座表白:愿做你的小绵羊”,,, 好吧在这道题里我们要弹飞绵羊,有分块 ...

  9. 【BZOJ2002】弹飞绵羊(Link-Cut Tree)

    [BZOJ2002]弹飞绵羊(Link-Cut Tree) 题面 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lost ...

随机推荐

  1. LOJ#137. 最小瓶颈路 加强版(Kruskal重构树 rmq求LCA)

    题意 三倍经验哇咔咔 #137. 最小瓶颈路 加强版 #6021. 「from CommonAnts」寻找 LCR #136. 最小瓶颈路 Sol 首先可以证明,两点之间边权最大值最小的路径一定是在最 ...

  2. log4j.dtd

    <?xml version="1.0" encoding="UTF-8" ?> <!-- Licensed to the Apache Sof ...

  3. mongodb客户端操作常用命令

    一启动mongodb数据库mongod --dbpath E:\mongo\data\db(这里些自己的mongodb数据库存放目录)二客户端操作1.显示数据库集合show dbs2.新建数据库use ...

  4. 《C#多线程编程实现方式》

    一.使用线程的理由 1.可以使用线程将代码同其他代码隔离,提高应用程序的可靠性. 2.可以使用线程来简化编码. 3.可以使用线程来实现并发执行. 二.基本知识 1.进程与线程:进程作为操作系统执行程序 ...

  5. vue中 eCharts 自适应容器

    在 vue 脚手架开发中,echarts图表自适应容器的方法: 父组件: <template> <div class="statistics_wrap"> ...

  6. node-sass 安装报错解决办法

    npm install安装node-sass时出现以下问题: Cannot download https://github.com/sass/node-sass/releases/download/v ...

  7. Linux 两组信号对比

    博客逐步迁移到,独立博客,原文地址 http://www.woniubi.cn/two_groups_signal_difference/ 之前看信号的时候,没有太注意不同信号的对比.今天再次看到的时 ...

  8. Android实现异步的几种方法

    在Android项目中,有经验的开发人员都知道,一些耗时的IO操作等都必须在子线程中去操作,那么可以有哪些方法来开启子线程呢,一般可以使用Java中自带的几种方法,也可以使用Andorid特有的一些类 ...

  9. IDEA下通过Git实现代码管理

    IDEA下通过Git实现代码管理 1.介绍 1.1 Git概述 Git是类似于SVN等代码管理软件,使用分布式技术实现.Github是互联网代码仓库,每个人可以在上面创建自己的仓库,使用git完成同g ...

  10. JavaScript 面向对象编程(二):继承

    Javascript面向对象编程(二):构造函数的继承 这个系列的第一部分,主要介绍了如何"封装"数据和方法,以及如何从原型对象生成实例. 今天要介绍的是,对象之间的"继 ...