点此看题面

大致题意: 给你一棵树,每次问你两点之间第\(k\)小的点权,强制在线。

主席树

这种题目强制在线一般就是数据结构了。

而看到区间第\(k\)小,很容易就能想到主席树

至少不会有人想到树套树

树上主席树

与一般的主席树不同,这题的主席树是树上主席树(不过许多奆佬称其为主席树上树)。

维护数列的主席树,我们一般是由前一个数的主席树构造当前树的主席树。

而树上的主席树其实也是类似的,可以由父亲节点的主席树构造当前树的主席树。

关于查询操作

关于查询两个节点\(x,y\)路径间第\(k\)小的权值,我们进行如下操作:

  • 首先,找到\(x\)和\(y\)的\(LCA\),姑且命名它为\(z\)。
  • 然后,我们可以进行差分,即用\(x\)和\(y\)的值与\(z\)和\(fa_z\)的值相减,就可以得出最终的答案(这与数组版的主席树是类似的)。

对于\(LCA\),我们可以直接用倍增\(LCA\)

然后我们就可以发现这是一道主席树板子题。

代码

#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define uint unsigned int
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define abs(x) ((x)<0?-(x):(x))
#define INF 1e9
#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))
#define ten(x) (((x)<<3)+((x)<<1))
#define N 100000
#define LogN 20
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
using namespace std;
int n,cnt,ee=0,a[N+5],p[N+5],lnk[N+5],Depth[N+5],fa[N+5][LogN+5];
struct edge
{
int to,nxt;
}e[(N<<1)+5];
class FIO
{
private:
#define Fsize 100000
#define tc() (FinNow==FinEnd&&(FinEnd=(FinNow=Fin)+fread(Fin,1,Fsize,stdin),FinNow==FinEnd)?EOF:*FinNow++)
#define pc(ch) (FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,FoutSize,stdout),Fout[(FoutSize=0)++]=ch))
int f,FoutSize,OutputTop;char ch,Fin[Fsize],*FinNow,*FinEnd,Fout[Fsize],OutputStack[Fsize];
public:
FIO() {FinNow=FinEnd=Fin;}
inline void read(int &x) {x=0,f=1;while(!isdigit(ch=tc())) f=ch^'-'?1:-1;while(x=ten(x)+(ch&15),isdigit(ch=tc()));x*=f;}
inline void read_char(char &x) {while(isspace(x=tc()));}
inline void read_string(string &x) {x="";while(isspace(ch=tc()));while(x+=ch,!isspace(ch=tc())) if(!~ch) return;}
inline void write(int x) {if(!x) return (void)pc('0');if(x<0) pc('-'),x=-x;while(x) OutputStack[++OutputTop]=x%10+48,x/=10;while(OutputTop) pc(OutputStack[OutputTop]),--OutputTop;}
inline void write_char(char x) {pc(x);}
inline void write_string(string x) {register int i,len=x.length();for(i=0;i<len;++i) pc(x[i]);}
inline void end() {fwrite(Fout,1,FoutSize,stdout);}
}F;
inline int LCA(int x,int y)//倍增LCA
{
register int i;
if(Depth[x]<Depth[y]) swap(x,y);
for(i=0;Depth[x]^Depth[y];++i) if((Depth[x]^Depth[y])&(1<<i)) x=fa[x][i];
if(!(x^y)) return x;
for(i=0;fa[x][i]^fa[y][i];++i);
for(--i;i>=0;--i) if(fa[x][i]^fa[y][i]) x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
class Class_ChairmanTree//主席树
{
private:
int n,tot,Root[N+5];
struct Tree
{
int Val,Size,Son[2];
}node[N*LogN+5];
inline void Build(int l,int r,int &rt)//建树
{
if(!rt&&(rt=++tot),!(l^r)) return;
register int mid=l+r>>1;
Build(l,mid,node[rt].Son[0]),Build(mid+1,r,node[rt].Son[1]);
}
inline void ins(int l,int r,int &rt,int lst,int val)//插入
{
if(node[rt=++tot]=node[lst],++node[rt].Size,!(l^r)) return;
register int mid=l+r>>1;
val<=mid?ins(l,mid,node[rt].Son[0],node[lst].Son[0],val):ins(mid+1,r,node[rt].Son[1],node[lst].Son[1],val);
}
inline int qry(int l,int r,int rt1,int rt2,int rt3,int rt4,int k)//查询
{
if(!(l^r)) return l;
register int mid=l+r>>1,t=node[node[rt3].Son[0]].Size+node[node[rt4].Son[0]].Size-node[node[rt1].Son[0]].Size-node[node[rt2].Son[0]].Size;
if(t>=k) return qry(l,mid,node[rt1].Son[0],node[rt2].Son[0],node[rt3].Son[0],node[rt4].Son[0],k);
else return qry(mid+1,r,node[rt1].Son[1],node[rt2].Son[1],node[rt3].Son[1],node[rt4].Son[1],k-t);
}
public:
inline void Init(int len) {Build(1,n=len,Root[0]);}//初始化
inline void Insert(int v,int nv,int val) {ins(1,n,Root[nv],Root[v],val);}
inline int Query(int v1,int v2,int k) {return qry(1,n,Root[LCA(v1,v2)],Root[fa[LCA(v1,v2)][0]],Root[v1],Root[v2],k);}
}ChairmanTree;
inline int find(int x)//离散化
{
register int l=1,r=cnt,mid=l+r>>1;
for(;l<=r;mid=l+r>>1) p[mid]<x?l=mid+1:r=mid-1;
return l;
}
inline void Init(int x)//初始化
{
register int i;
for(ChairmanTree.Insert(fa[x][0],x,find(a[x])),i=1;i<=LogN;++i) fa[x][i]=fa[fa[x][i-1]][i-1];//由父亲的主席树建树
for(i=lnk[x];i;i=e[i].nxt) if(fa[x][0]^e[i].to) Depth[e[i].to]=Depth[x]+1,fa[e[i].to][0]=x,Init(e[i].to);//继续遍历
}
int main()
{
register int i,x,y,z,s,Q,ans=0;
for(F.read(n),F.read(Q),i=1;i<=n;++i) F.read(a[i]),p[i]=a[i];
for(i=1;i<n;++i) F.read(x),F.read(y),add(x,y),add(y,x);
for(sort(p+1,p+n+1),ChairmanTree.Init(cnt=unique(p+1,p+n+1)-p-1),Init(1);Q;--Q)
F.read(x),F.read(y),F.read(z),F.write(ans=p[ChairmanTree.Query(x^ans,y,z)]),F.write_char('\n');//求答案
return F.end(),0;
}

【洛谷2633】Count on a tree(树上主席树)的更多相关文章

  1. 洛谷P2633 Count on a tree(主席树,倍增LCA,树上差分)

    洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...

  2. 洛谷P2633 Count on a tree(主席树,倍增LCA)

    洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...

  3. Count on a tree 树上主席树

    Count on a tree 树上主席树 给\(n\)个树,每个点有点权,每次询问\(u,v\)路径上第\(k\)小点权,强制在线 求解区间静态第\(k\)小即用主席树. 树上主席树类似于区间上主席 ...

  4. 解题:洛谷2633 Count on a tree

    题面 在树上建主席树...... 每个点从父亲那里建过来,最后建出来就是从根到$i$这条链上的主席树,查询的时候一边差分一边查询 ($cmt[u]+cmt[v]-cmt[lca(u,v)]-cmt[a ...

  5. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  6. 【BZOJ2588】Count On a Tree(主席树)

    [BZOJ2588]Count On a Tree(主席树) 题面 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第 ...

  7. ☆ [洛谷P2633] Count on a tree 「树上主席树」

    题目类型:主席树+\(LCA\) 传送门:>Here< 题意:给出一棵树.每个节点有点权.问某一条路径上排名第\(K\)小的点权是多少 解题思路 类似区间第\(K\)小,但放在了树上. 考 ...

  8. 【洛谷 P2633】 Count on a tree(主席树,树上差分)

    题目链接 思维难度0 实现难度7 建出主席树后用两点的状态减去lca和lca父亲的状态,然后在新树上跑第\(k\)小 #include <cstdio> #include <cstr ...

  9. 洛谷 P2633 Count on a tree

    P2633 Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中last ...

  10. 洛谷 P6177 - Count on a tree II/【模板】树分块(树分块)

    洛谷题面传送门 好家伙,在做这道题之前我甚至不知道有个东西叫树分块 树分块,说白了就是像对序列分块一样设一个阈值 \(B\),然后在树上随机撒 \(\dfrac{n}{B}\) 个关键点,满足任意一个 ...

随机推荐

  1. 使用pods添加第三方的时候,出现ld: library not found for -lpop

    ld: library not found for -lpop 错误,是在使用pods添加第三方的时候,出现的编译错误,同时伴随着的是error: linker command failed with ...

  2. python基本数据类型练习

    一.元素分类# 有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中.# 即 ...

  3. 学霸笔记系列 - Python Selenium项目实战(一)—— 怎么去验证一个按钮是启用的(可点击)?

    Q: 使用 Python Selenium WebDriver 怎么去验证一个按钮是启用的(可点击)? A:Selenium WebDriver API 里面给出了解决方法is_enabled() 使 ...

  4. B - Reverse and Compare 小小思维题

    http://agc019.contest.atcoder.jp/tasks/agc019_b 一开始的做法是, 用总数减去回文子串数目,因为回文子串怎么翻转都不影响答案. 然后,如果翻转afucka ...

  5. C# Thread类 线程优先级

    1.C#对线程进行操作时,通过Thread类,可以对线程进行创建.挂起.恢复.休眠.终止及设置优先级. Thread类位于System.Threading命名空间下,该命名空间还包含一个ThreadP ...

  6. leetcode--Learn one iterative inorder traversal, apply it to multiple tree questions (Java Solution)

    will show you all how to tackle various tree questions using iterative inorder traversal. First one ...

  7. Storm概念学习系列 之数据流模型、Storm数据流模型

    不多说,直接上干货! 数据流模型 数据流模型是由数据流.数据处理任务.数据节点.数据处理任务实例等构成的一种数据模型.本节将介绍的数据流模型如图1所示. 分布式流处理系统由多个数据处理节点(node) ...

  8. 使用jQuery实现文本框input定位到文字最后(兼容所有浏览器)

    $.fn.setCursorPosition = function(position){ if(this.lengh == 0) return this; return $(this).setSele ...

  9. js对secure的支持是没问题的,httponly是为限制js而产生的,当然httponly的cookie也不会被js创建

    function setCookie4(c_name,value,expiredays){ var cookieStr = ""; var exdate=new Date(); e ...

  10. python中函数的定义与调用

    1.为什么要用函数? (1)代码重复太多(2)可读性差 使用函数的好处: (1)代码重用 (2)保持一致性,易维护 (2)可扩展性 2.初始函数定义与调用     函数的定义 def test(x): ...