题意:

给定n个不重复的数, 求出这些数的所有子集, 然后设一个数Ni 为 第i个子集中,最大的数 - 最小的数。 然后将i个 Ni求和, 结果mod 1e9 + 7。

分析:

首先将n个数排列,生成一个单调的数列。

举个例子, 如 1 3 5 7 9。

可以看出 1 作为一个子集中最小的数会有 2^4 - 1 = 15种(1 和 3 5 7 9组合, 3 5 7 9任意的非空子集有2^4 - 1种) , 作为最大的数有2^0 - 1 = 0(因为没有数比1小).

同理 9 作为一个子集中最小的数会有2^0 -1= 0 种, 作为最大的数有 2^4 - 1 = 15种。

再例如 3 , 作为最小的数会有 2 ^ 3 - 1  =  7种, 作为最大的数会有2^1 -1 = 1种。

所以我们可以得出以下公式 :

作为最大的种类数就是 pow(2,有多少个数在i的左边) -1

作为最小的种类数就是 pow(2,有多少个数在i右边) -1

a[i] *( i作为最大的数种类 - i作为最小的数的种类),可以求出这个数对答案的影响, 把n个a[i]求出来就是答案。

由于个数会去到很大, 所以可以用快速幂加速.

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5 +;
const int mod = 1e9 + ;
int n;
long long a[maxn];
typedef long long ll;
ll quickmod(ll a, ll b, ll m)
{
ll ans = ;
while (b)//用一个循环从右到左便利b的所有二进制位
{
if (b & )//判断此时b[i]的二进制位是否为1
{
ans = (ans*a) % m;//乘到结果上,这里a是a^(2^i)%m
b--;//把该为变0
}
b /= ;
a = a*a%m;
}
return ans;
}
int main()
{
scanf("%d", &n);
for(int i = ; i <= n; i++)
{
scanf("%lld", &a[i]);
}
sort(a+,a++n);
long long ans = ;
for(int i = ; i < n/+; i++)
{
long long t = ;
t += (a[i] * -(quickmod(,n-i,mod) - quickmod(,i-,mod)));
t += (a[n+-i] * (quickmod(,n-i,mod) - quickmod(,i-,mod)));
t %= mod;
ans = (ans +t) % mod;
}
printf("%lld\n", (ans + mod) % mod );//ans可能为负, 需要+mod
}

Codeforce 810C Do you want a date?的更多相关文章

  1. Codeforces 810C Do you want a date?(数学,前缀和)

    C. Do you want a date? time limit per test:2 seconds memory limit per test:256 megabytes input:stand ...

  2. Codeforce 515A - Drazil and Date

    Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's ...

  3. 【codeforces 810C】Do you want a date?

    [题目链接]:http://codeforces.com/contest/810/problem/C [题意] 给你一个集合,它包含a[1],a[2]..a[n]这n个整数 让你求出这个集合的所有子集 ...

  4. Two progressions CodeForce 125D 思维题

    An arithmetic progression is such a non-empty sequence of numbers where the difference between any t ...

  5. CodeForce 577B Modulo Sum

    You are given a sequence of numbers a1, a2, ..., an, and a number m. Check if it is possible to choo ...

  6. CodeForce 192D Demonstration

    In the capital city of Berland, Bertown, demonstrations are against the recent election of the King ...

  7. CodeForce 176C Playing with Superglue

    Two players play a game. The game is played on a rectangular board with n × m squares. At the beginn ...

  8. CodeForce 222C Reducing Fractions

    To confuse the opponents, the Galactic Empire represents fractions in an unusual format. The fractio ...

  9. CodeForce 359C Prime Number

    Prime Number CodeForces - 359C Simon has a prime number x and an array of non-negative integers a1,  ...

随机推荐

  1. Miller&&Pollard HDOJ 4344 Mark the Rope

    题目传送门 题意:一个长为n(n<2^63)的管子,在管子上做标记,每隔L个长度单位做一个标记,从管子头端开始,保证最后一次标记恰好在管子的尾端.让你找出有多少个这样的L(L<n),且他们 ...

  2. 题解报告:hdu 1171 Big Event in HDU(多重背包)

    Problem Description Nowadays, we all know that Computer College is the biggest department in HDU. Bu ...

  3. 223 Rectangle Area 矩形面积

    在二维平面上计算出两个由直线构成的矩形叠加覆盖后的面积. 假设面积不会超出int的范围. 详见:https://leetcode.com/problems/rectangle-area/descrip ...

  4. 窗体WINFORM

    窗体的事件:删除事件:先将事件页面里面的挂好的事件删除,再删后台代码里面的事件 Panel是一个容器 1.Label -- 文本显示工具Text:显示的文字取值.赋值:lable1.Text 2.Te ...

  5. 锁 Lock、重入锁、写入锁

    ReentrantLock 重入锁 类似于synchronize 区别与写法上,在需要进行同步的代码部分加上锁定,但不要忘记最后一定要释放锁定, 不然会造成锁永远无法释放,其他线程永远进不来的结果.e ...

  6. Program received signal SIGILL, Illegal instruction

    Program received signal SIGILL, Illegal instruction 这个错误,发现是直接在printf 的%s中直接使用string类型,而没有使用c字符串格式造成 ...

  7. 提交应用 Windows Phone的应用程序认证要求

    本文介绍了 Windows Phone 应用程序或游戏要通过认证并在 Windows Phone Marketplace 中发布而必须满足的策略和技术要求. 1.0 计划概述 设计认证过程的一个核心原 ...

  8. 为什么jfinal的控制器不用单例模式

    先假controller定采用单例模式,通常两种设计方式来存放 HttpServletRequest.HttpServletResponse 等对象,一是利用一个类似于 ActionContext 的 ...

  9. centOS linux 下PHP编译安装详解

    一.下载PHP源码包 wget http://php.net/distributions/php-5.6.3.tar.gz   二.添加依赖应用 yum install -y gcc gcc-c++ ...

  10. xamarin 学习笔记02- IOS Simulator for windows 安装

    微软发布了在window下的ios模拟器 下载 ios模拟器 并安装在windows系统上. Xamarin for Visual Studio 和 网络上的 Mac 中的 Xamarin.iOS 开 ...