Spark调研笔记第3篇 - Spark集群相应用的调度策略简单介绍
Spark集群的调度分应用间调度和应用内调度两种情况,下文分别进行说明。
1. 应用间调度
1) 调度策略1: 资源静态分区
资源静态分区是指整个集群的资源被预先划分为多个partitions,资源分配时的最小粒度是一个静态的partition。
依据应用对资源的申请需求为其分配静态的partition(s)是Spark支持的最简单的调度策略。
我们已经知道,不同的应用有各自的Spark Context且占用各自的JVM和executor(s)。依据Spark Job Scheduling文档的说明,若Spark集群配置了static partitioning的调度策略,则它对提交的多个应用间默认採用FIFO顺序进行调度,每一个获得执行机会的应用在执行期间可占用整个集群的资源,这样做明显不友好,所以应用提交者通常须要通过设置spark.cores.max来控制其占用的core/memory资源。
2) 调度策略2: 动态共享CPU cores
若Spark集群採用Mesos模式,则除上面介绍的static partitioning的调度策略外,它还支持dynamic sharing of CPU cores的策略。
在这样的调度策略下。每一个应用仍拥有各自独立的cores/memory。但当应用申请资源后并未使用时(即分配给应用的资源当前闲置),其他应用的计算任务可能会被调度器分配到这些闲置资源上。
当提交给集群的应用有非常多是非活跃应用时(即它们并不是时刻占用集群资源),这样的调度策略能非常大程度上提升集群资源利用效率。
但它带来的风险是:若某个应用从非活跃状态转变为活跃状态时。且它提交时申请的资源当前恰好被调度给其他应用,则它无法马上获得运行的机会。
3) 调度策略3: 动态资源申请
Spark 1.2引入了一种被称为Dynamic Resource Allocation的调度策略,它同意依据应用的workload动态调整其所需的集群资源。也即,若应用临时不须要它之前申请的资源,则它能够先归还给集群,当它须要时。能够又一次向集群申请。当Spark集群被多个应用共享时,这样的按需分配的策略显然是很有优势的。
在当前Spark版本号下。动态资源申请是以core为粒度的。
须要特别注意的是,动态资源申请的调度策略默认是不启用的。且眼下仅仅支持在YARN模式(通过设置spark.dynamicAllocation.enabled能够启用该策略),依据Spark文档的说明。将来的版本号会支持standalone模式和Mesos模式。
2. 应用内调度
在应用内部(每一个Application在Spark集群看来均是一个独立的Spark Context),每一个action(spark支持的rdd action列表见这里)以及计算这个action结果所须要的一系列tasks被统称为一个"job"。
默认情况下,Spark调度器对同一个Application内的不同jobs採用FIFO的调度策略。每一个job被分解为不同的stages(spark支持的每一个rdd transformation即为一个stage,完整的transformations列表见这里),当多个job各自的stage所在的线程同一时候申请资源时,第1个job的stage优先获得资源。
假设job
queue头部的job恰好是须要最长运行时间的job时,后面全部的job均得不到运行的机会,这样会导致某些job(s)饿死的情况。
从Spark 0.8開始。Spark集群对同一Application内的jobs的调度策略能够被配置为"fair sharing",详细而言,Spark对不同jobs的stages提交的tasks採用Round Robin的调度方式。如此,全部的jobs均得到公平运行的机会。
因此,即使某些short-time jobs本身的提交时间在long jobs之后,它也能获得被运行的机会,从而达到可预期的响应时间。
要启用fair sharing调度策略,须要在spark配置文件里将spark.scheduler.mode设置为FAIR。
此外。fair sharing调度也支持把不同的jobs聚合到一个pool。不同的pools赋予不同的运行优先级。这是FIFO和fair sharing两种策略的折衷策略,既能保证jobs之间的优先级,也能保证同一优先级的jobs均能得到公平运行的机会。
详细的设置细节请參考Spark相关的配置文档,这里不赘述。
【參考资料】
1. Job Scheduling
2. Spark Programming Guide - Actions
3. Spark Programming Guide - Transformations
============================== EOF =========================
Spark调研笔记第3篇 - Spark集群相应用的调度策略简单介绍的更多相关文章
- Spark调研笔记第6篇 - Spark编程实战FAQ
本文主要记录我使用Spark以来遇到的一些典型问题及其解决的方法,希望对遇到相同问题的同学们有所帮助. 1. Spark环境或配置相关 Q: Sparkclient配置文件spark-defaults ...
- Spark调研笔记第2篇 - 怎样通过Sparkclient向Spark提交任务
在上篇笔记的基础上,本文介绍Sparkclient的基本配置及Spark任务提交方式. 1. Sparkclient及基本配置 从Spark官网下载的pre-built包中集成了Sparkclient ...
- Spark调研笔记第4篇 - PySpark Internals
事实上.有两个名为PySpark的概念.一个是指Sparkclient内置的pyspark脚本.而还有一个是指Spark Python API中的名为pyspark的package. 本文仅仅对第1个 ...
- Spark学习笔记1——第一个Spark程序:单词数统计
Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-c ...
- Spark性能优化指南-高级篇(spark shuffle)
Spark性能优化指南-高级篇(spark shuffle) 非常好的讲解
- Spark学习笔记1(初始spark
1.什么是spark? spark是一个基于内存的,分布式的,大数据的计算框架,可以解决各种大数据领域的计算问题,提供了一站式的服务 Spark2009年诞生于伯克利大学的AMPLab实验室 2010 ...
- JMS学习篇《一》ActiveMQ消息中间件的简单介绍与用法-概念篇
原创说明:本篇博文为本人原创作品,转载请注明出处 1.何为消息中间件 消息中间件是一种在分布式应用中互相交换信息的一种技术,常见的成熟消息中间件有:RabbitMQ.SonicMQ,activeMQ. ...
- Spark学习笔记(三)-Spark Streaming
Spark Streaming支持实时数据流的可扩展(scalable).高吞吐(high-throughput).容错(fault-tolerant)的流处理(stream processing). ...
- spark复习笔记(3):使用spark实现单词统计
wordcount是spark入门级的demo,不难但是很有趣.接下来我用命令行.scala.Java和python这三种语言来实现单词统计. 一.使用命令行实现单词的统计 1.首先touch一个a. ...
随机推荐
- java面试宝典第一弹
object类的直接子类有哪些 Boolean Character Character.Subset Class ClassLoader Compiler Enum Math Number Packa ...
- 解决CSDN阅读全部需要登录的问题
现在CSDN网站每次点击“阅读全部”的时候,必须要登录才能展开,很不方便.解决方法如下:点击F12打开开发者工具,点击Console,将下面两行代码粘贴进去即可: $("div.articl ...
- Linux修改网卡名
问题现象:戴尔机器网卡名为em1,修改为eth0a)由于未发现有/etc/udev/rule.d/70-persistent-net.rules文件,重启后也未发现此文件手动执行/lib/udev/w ...
- Python数据分析 Pandas模块 基础数据结构与简介(一)
pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二 ...
- 【实验吧】Just Click
拿到答案需要正确地点击按钮 格式:simCTF{ } 解题链接: http://ctf5.shiyanbar.com/re/rev4.exe 由于最近在学数据库是c#编程,发现是c#,于是用.net ...
- CS academy Growing Trees【模板】DP求树的直径
[题意概述] 给出一棵树,树上的边有两个值a和b,你可以在[0,limit]范围内选择一个整数delta,树上的边的权值为a+b*delta,现在问当delta为多少的时候树的直径最小.最小直径是多少 ...
- set()集合基本操作
运用频次:☆☆ set是一个无序且不重复元素集,基本操作如下: 1. 创建set集合,会自动转换成set类型 2. add():添加元素 def add(self, *args, **kwargs): ...
- js的几个可能不清晰的问题
一、关于全局变量的 var test=function(){ var a=1; setTimeout(function(){ console.log(a); a=2; },1000); a=3; se ...
- ORACLE-023:令人烦恼的 ora-01722 无效数字
https://blog.csdn.net/yysyangyangyangshan/article/details/51762746
- PHP加速之eaccelerator
eaccelerator简介: eAccelerator是一个自由开放源码php加速器,优化和动态内容缓存,提高了php脚本的缓存性能,使得PHP脚本在编译的状态下,对服务器的开销几乎完全消除. 它还 ...