Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.


Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1 1 2
0 2 0 0

Sample Output

Case 1: 2
Case 2: 1

分析:

简单的贪心,先按x轴排序,记录圆心位置范围,如果一个点的圆心范围和前面一个圆心范围有交集,就把前一个圆心范围更新为他们的交集

不然答案+1,将当前圆心范围记录下来,最后输出ans

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;
struct node {
int x, y;
};
node g[1111];
double posr[1111], posl[1111];
int n, d, ans;
int cmp (node a, node b) {
if (a.x == b.x) return a.y > b.y;
return a.x < b.x;
}
double fx (node x) {
double k = sqrt (1.*d * d - x.y * x.y);
return k;
}
int main() {
for (int t = 1; cin >> n >> d; t++) {
if (n == 0 && d == 0) break;
ans = 0;
for (int i = 1; i <= n; i++) {
cin >> g[i].x >> g[i].y;
if (g[i].y > d) ans = -1;
}
if (ans == 0) {
sort (g + 1, g + 1 + n, cmp);
if (n >= 1) {
posl[++ans] = g[1].x - fx (g[1]);
posr[ans] = g[1].x + fx (g[1]);
}
for (int i = 2; i <= n; i++) {
if (g[i].x == g[i - 1].x) continue;
if (g[i].x - fx (g[i]) > posr[ans]) {
posl[++ans] = g[i].x - fx (g[i]), posr[ans] = g[i].x + fx (g[i]);
continue;
}
posl[ans] = max (posl[ans], g[i].x - fx (g[i]) ), posr[ans] = min (posr[ans], g[i].x + fx (g[i]) );
}
}
printf ("Case %d: %d\n", t, ans);
}
return 0;
}
http://www.cnblogs.com/keam37/ keam所有 转载请注明出处

POJ1328 Radar Installation 解题报告的更多相关文章

  1. C-C Radar Installation 解题报告

    C-C    Radar Installation   解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=86640#pr ...

  2. [POJ1328]Radar Installation

    [POJ1328]Radar Installation 试题描述 Assume the coasting is an infinite straight line. Land is in one si ...

  3. POJ1328——Radar Installation

    Radar Installation Description Assume the coasting is an infinite straight line. Land is in one side ...

  4. POJ--1328 Radar Installation(贪心 排序)

    题目:Radar Installation 对于x轴上方的每个建筑 可以计算出x轴上一段区间可以包含这个点 所以就转化成 有多少个区间可以涵盖这所有的点 排序之后贪心一下就ok 用cin 好像一直t看 ...

  5. POJ1328 Radar Installation 【贪心&#183;区间选点】

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54593   Accepted: 12 ...

  6. poj1328 Radar Installation(贪心 策略要选好)

    https://vjudge.net/problem/POJ-1328 贪心策略选错了恐怕就完了吧.. 一开始单纯地把island排序,然后想从左到右不断更新,其实这是错的...因为空中是个圆弧. 后 ...

  7. ZOJ-1360 || POJ-1328——Radar Installation

    ZOJ地址:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=360 POJ地址:http://poj.org/problem?id ...

  8. POJ1328 Radar Installation(贪心)

    题目链接. 题意: 给定一坐标系,要求将所有 x轴 上面的所有点,用圆心在 x轴, 半径为 d 的圆盖住.求最少使用圆的数量. 分析: 贪心. 首先把所有点 x 坐标排序, 对于每一个点,求出能够满足 ...

  9. zoj1360/poj1328 Radar Installation(贪心)

    对每个岛屿,能覆盖它的雷达位于线段[x-sqrt(d*d-y*y),x+sqrt(d*d+y*y)],那么把每个岛屿对应的线段求出来后,其实就转化成了经典的贪心法案例:区间选点问题.数轴上有n个闭区间 ...

随机推荐

  1. 501在全志r16平台tinav3.0系统下调通pwm1的10KHZ波形

    501在全志r16平台tinav3.0系统下调通pwm1的10KHZ波形 2018/10/19 19:52 版本:V1.0 开发板:SC3817R SDK:tina v3.0 1.01原始编译全志r1 ...

  2. spark shuffle:分区原理及相关的疑问

    一.分区原理 1.为什么要分区?(这个借用别人的一段话来阐述.) 为了减少网络传输,需要增加cpu计算负载.数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduc ...

  3. SQL——时间戳

    mysql 低版本,date.datetime.timestamp 无法精确到毫秒 可以舍弃时间类型字段,用 bigint 来代替,如果用字符串类型代替,还是比较担心排序的时候只是根据第一个字母进行排 ...

  4. vuex使用之state访问状态对象

    引入vuex1.利用npm包管理工具,进行安装 vuex.在控制命令行中输入下边的命令就可以了. npm install vuex --save 需要注意的是这里一定要加上 –save,因为你这个包我 ...

  5. laravel模块 目录设计

  6. proposal_layer.py层解读

    proposal_layer层是利用训练好的rpn网络来生成region proposal供fast rcnn使用. proposal_layer整个处理过程:1.生成所有的anchor,对ancho ...

  7. 十六进制字符串转byte (无符号字符串);

    方法一: unsigned char* hexstr_to_char(const char* hexstr) { size_t len = strlen(hexstr); IF_ASSERT(len ...

  8. Spring Data Redis入门示例:基于Jedis及底层API (二)

    使用底层API:RedisConnectionFactory和RedisConnection可以直接操作Redis,下面是一个简单的例子: ### Maven依赖 <properties> ...

  9. 路径工具类NSPathUtilities

    路径工具类NSPathUtilities.h 路径类NSPathUtilities.h包含了 NSString的函数和分类扩展,他允许你操作路径名.应该竟可能的使用这些函数,以便使程序更独立于文件系统 ...

  10. 笔试算法题(42):线段树(区间树,Interval Tree)

    议题:线段树(Interval Tree) 分析: 线段树是一种二叉搜索树,将一个大区间划分成单元区间,每个单元区间对应一个叶子节点:内部节点对应部分区间,如对于一个内部节点[a, b]而言,其左子节 ...