Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.


Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1 1 2
0 2 0 0

Sample Output

Case 1: 2
Case 2: 1

分析:

简单的贪心,先按x轴排序,记录圆心位置范围,如果一个点的圆心范围和前面一个圆心范围有交集,就把前一个圆心范围更新为他们的交集

不然答案+1,将当前圆心范围记录下来,最后输出ans

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;
struct node {
int x, y;
};
node g[1111];
double posr[1111], posl[1111];
int n, d, ans;
int cmp (node a, node b) {
if (a.x == b.x) return a.y > b.y;
return a.x < b.x;
}
double fx (node x) {
double k = sqrt (1.*d * d - x.y * x.y);
return k;
}
int main() {
for (int t = 1; cin >> n >> d; t++) {
if (n == 0 && d == 0) break;
ans = 0;
for (int i = 1; i <= n; i++) {
cin >> g[i].x >> g[i].y;
if (g[i].y > d) ans = -1;
}
if (ans == 0) {
sort (g + 1, g + 1 + n, cmp);
if (n >= 1) {
posl[++ans] = g[1].x - fx (g[1]);
posr[ans] = g[1].x + fx (g[1]);
}
for (int i = 2; i <= n; i++) {
if (g[i].x == g[i - 1].x) continue;
if (g[i].x - fx (g[i]) > posr[ans]) {
posl[++ans] = g[i].x - fx (g[i]), posr[ans] = g[i].x + fx (g[i]);
continue;
}
posl[ans] = max (posl[ans], g[i].x - fx (g[i]) ), posr[ans] = min (posr[ans], g[i].x + fx (g[i]) );
}
}
printf ("Case %d: %d\n", t, ans);
}
return 0;
}
http://www.cnblogs.com/keam37/ keam所有 转载请注明出处

POJ1328 Radar Installation 解题报告的更多相关文章

  1. C-C Radar Installation 解题报告

    C-C    Radar Installation   解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=86640#pr ...

  2. [POJ1328]Radar Installation

    [POJ1328]Radar Installation 试题描述 Assume the coasting is an infinite straight line. Land is in one si ...

  3. POJ1328——Radar Installation

    Radar Installation Description Assume the coasting is an infinite straight line. Land is in one side ...

  4. POJ--1328 Radar Installation(贪心 排序)

    题目:Radar Installation 对于x轴上方的每个建筑 可以计算出x轴上一段区间可以包含这个点 所以就转化成 有多少个区间可以涵盖这所有的点 排序之后贪心一下就ok 用cin 好像一直t看 ...

  5. POJ1328 Radar Installation 【贪心&#183;区间选点】

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54593   Accepted: 12 ...

  6. poj1328 Radar Installation(贪心 策略要选好)

    https://vjudge.net/problem/POJ-1328 贪心策略选错了恐怕就完了吧.. 一开始单纯地把island排序,然后想从左到右不断更新,其实这是错的...因为空中是个圆弧. 后 ...

  7. ZOJ-1360 || POJ-1328——Radar Installation

    ZOJ地址:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=360 POJ地址:http://poj.org/problem?id ...

  8. POJ1328 Radar Installation(贪心)

    题目链接. 题意: 给定一坐标系,要求将所有 x轴 上面的所有点,用圆心在 x轴, 半径为 d 的圆盖住.求最少使用圆的数量. 分析: 贪心. 首先把所有点 x 坐标排序, 对于每一个点,求出能够满足 ...

  9. zoj1360/poj1328 Radar Installation(贪心)

    对每个岛屿,能覆盖它的雷达位于线段[x-sqrt(d*d-y*y),x+sqrt(d*d+y*y)],那么把每个岛屿对应的线段求出来后,其实就转化成了经典的贪心法案例:区间选点问题.数轴上有n个闭区间 ...

随机推荐

  1. Linux之测试服务器和端口连通

    目录 wget工具 telnet工具 ssh工具 wget工具: 该工具是网络自动下载工具,如果linux或centos中不存在,需要先安装,支持http.https.ftp协议,wget名称的由来是 ...

  2. 升级 Cocoapods 到1.2.0指定版本,降低版本及卸载

    =====================升级版本=================== CocoaPods 1.1.0+ is required to build SnapKit 3.0.0+. 在 ...

  3. 《基于Node.js实现简易聊天室系列之引言》

    简述:这个聊天室是基于Node.js实现的,完成了基本的实时通信功能.在此之前,对node.js和mongodb一无所知,但是通过翻阅博客,自己动手基本达到了预期的效果.技术,不应该是闭门造车,而是学 ...

  4. 关于docker入门教程

    简介:docker入门教程 docker入门教程翻译自docker官方网站的Docker getting started 教程,官方网站:https://docs.docker.com/linux/s ...

  5. postgresql update from

    1,update   from   关联表的更新 update table a set name=b.name from table B b  where a.id=b.id; update test ...

  6. hibernate fetch属性

    fetch的属性值有:select(默认值).join.subselect 1)当fetch=”select”时,程序会先查询返回要查询的主体对象,然后根据lazy属性看是否懒加载. 2)当fetch ...

  7. Android-ViewPagerIndicator框架使用——CirclePageIndicator

    前言:Circle适用于应用新功能的展示页和商品的多张图片的展示功能. 1.定义布局文件:SampleCirclesDefault中添加了一个布局:simple_circles. 布局中定义一个Lin ...

  8. python 3 廖雪峰博客笔记(一) python特性

    python 是一种解释性语言,代码在执行时会一行一行翻译成CPU能理解的机器语言. python 的特点是简单优雅. python 的优点是 代码优雅 基础代码库丰富,包括网络.文件.GUI.数据库 ...

  9. MySQL和Oracle的比较

    可以从以下几个方面来进行比较: (1) 对事务的提交    MySQL默认是自动提交,而Oracle默认不自动提交,需要用户手动提交,需要在写commit;指令或者点击commit按钮(2) 分页查询 ...

  10. python3.x Day6 多线程

    线程???进程????区别???何时使用??? 进程:是程序以一个整体的形式暴露给操作系统管理,里边包含了对各种资源的调用,内存的使用,对各种资源的管理的集合,这就叫进程 线程:是操作系统最小的调度单 ...