TensorFlow-Gpu环境搭建——Win10+ Python+Anaconda+cuda
参考:http://blog.csdn.net/sb19931201/article/details/53648615
https://segmentfault.com/a/1190000009803319
python版本tensorflow分为Cpu版本和Gpu版本,Nvidia的Gpu非常适合机器学校的训练
python和tensorflow的安装较简单,可以参考上面的链接,主要是通过Anaconda来管理。
使用Nvidia的Gpu,需要安装Cuda和cudnn
需要注意
1、显卡是否支持GPU加速
2、软件的版本
windows 10--python 3.5--tensorflow-gpu 1.4.0--cuda cuda_8.0.61_win10 --cudnn-8.0-windows10-x64-v6.0
Cuda
The NVIDIA® CUDA® Toolkit provides a development environment for creating high performance GPU-accelerated applications. With the CUDA Toolkit, you can develop, optimize and deploy your applications on GPU-accelerated embedded systems, desktop workstations, enterprise data centers, cloud-based platforms and HPC supercomputers. The toolkit includes GPU-accelerated libraries, debugging and optimization tools, a C/C++ compiler and a runtime library to deploy your application.
介绍及最新版下载地址:https://developer.nvidia.com/cuda-toolkit
cuda个版本下载地址:https://developer.nvidia.com/cuda-toolkit-archive,根据提示安装即可
cudnn
The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers. cuDNN is part of the NVIDIA Deep Learning SDK.
cudnn 是一个dll文件,需要复制到cuda的安装目录的bin文件中
测试代码,使用的是tensorflow官网的代码
import tensorflow as tf
import numpy as np # 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300 # 构造一个线性模型
#
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b # 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss) # 初始化变量
init = tf.initialize_all_variables() # 启动图 (graph)
sess = tf.Session()
sess.run(init) # 拟合平面
for step in range(0, 201):
sess.run(train)
if step % 20 == 0:
print (step, sess.run(W), sess.run(b)) # 得到最佳拟合结果 W: [[0.100 0.200]], b: [0.300]
输出结果:
可以看到显卡的计算能力是6.1
D:\Tools\Anaconda35\python.exe D:/PythonProj/tensorFlow/tensor8.py
WARNING:tensorflow:From D:\Tools\Anaconda35\lib\site-packages\tensorflow\python\util\tf_should_use.py:107: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2017-11-19 17:08:40.225423: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2017-11-19 17:08:40.882335: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Found device 0 with properties:
name: GeForce GTX 1060 3GB major: 6 minor: 1 memoryClockRate(GHz): 1.7085
pciBusID: 0000:01:00.0
totalMemory: 3.00GiB freeMemory: 254.16MiB
2017-11-19 17:08:40.883414: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1060 3GB, pci bus id: 0000:01:00.0, compute capability: 6.1)
0 [[ 0.29419887 -0.23337287]] [ 1.0515306]
20 [[ 0.00030054 0.03563837]] [ 0.44433528]
40 [[ 0.04815638 0.14494912]] [ 0.35854429]
60 [[ 0.07746208 0.17898612]] [ 0.32386735]
80 [[ 0.09062619 0.19159497]] [ 0.30974501]
100 [[ 0.09614999 0.19658807]] [ 0.30398068]
120 [[ 0.09842454 0.1986087 ]] [ 0.30162627]
140 [[ 0.09935603 0.1994319 ]] [ 0.3006644]
160 [[ 0.09973686 0.19976793]] [ 0.30027145]
180 [[ 0.09989249 0.1999052 ]] [ 0.30011091]
200 [[ 0.09995609 0.19996127]] [ 0.30004531] Process finished with exit code 0
MNIST教程,训练结果比cup版本快了大约百倍
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf #加载训练数据
MNIST_data_folder=r"D:\WorkSpace\tensorFlow\data"
mnist=input_data.read_data_sets(MNIST_data_folder,one_hot=True)
print(mnist.train.next_batch(1))
#
# 建立抽象模型
x = tf.placeholder("float", [None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
y_ = tf.placeholder("float", [None,10])
#权重初始化
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #卷积和池化
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') #第一层卷积
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #第二层卷积
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #密集连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #Dropout
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#输出层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #训练和评估模型
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess = tf.InteractiveSession();
init = tf.global_variables_initializer();
sess.run(init); for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print("test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
TensorFlow-Gpu环境搭建——Win10+ Python+Anaconda+cuda的更多相关文章
- 深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把N ...
- 深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动
前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和108 ...
- 【tensorflow】1.安装Tensorflow开发环境,安装Python 的IDE--PyCharm
================================================== 安装Tensorflow开发环境,安装Python 的IDE--PyCharm 1.PyCharm ...
- Python环境搭建、python项目以docker镜像方式部署到Linux
Python环境搭建.python项目以docker镜像方式部署到Linux 本文的项目是用Python写的,记录了生成docker镜像,然后整个项目在Linux跑起来的过程: 原文链接:https: ...
- 04基于python玩转人工智能最火框架之TensorFlow开发环境搭建
MOOC_VM.vdl.zip 解压之后,得到一个vdl文件.打开virtual box,新建选择类型linuxubuntu 64位. 选择继续,分配2g.使用已有的虚拟硬盘文件,点击选择我们下载的文 ...
- ubuntu16.04+cuda9+cudnn7+tensorflow+pycharm环境搭建
安装环境:ubuntu16.04+cuda9+cudnn7+tensorflow+pycharm 1)前期搭建过程主要是按照这篇博文,对于版本选择,安装步骤都讲得很详细,亲测有效! https://b ...
- TensorFlow 开发环境搭建--Pycharm
今天动手开始搭建TensorFlow开发环境, 用PyCharm来跑MNIST中的例子.记录过程如下 下载安装 (1)首先安装AnaConda, AnaConda可以帮忙去管理安装包,帮忙创建虚拟环境 ...
- TensorFlow实验环境搭建
初衷: 由于系统.平台的原因,网上有各种版本的tensorflow安装教程,基于linux的.mac的.windows的,各有不同,tensorflow的官网也给出了具体的安装命令.但实际上,即使te ...
- Jetson tx2的tensorflow keras环境搭建
其实我一直都在想,搞算法的不仅仅是服务,我们更是要在一个平台上去实现服务,因此,在工业领域,板子是很重要的,它承载着无限的机遇和挑战,当然,我并不是特别懂一些底层的东西,但是这篇博客希望可以帮助有需要 ...
随机推荐
- vue用js部分控制动画实现
上次我们提到用vue实现过渡动画,其实只讲了vue动画的一部分,用vue自带的css状态控制动画实现,不带js http://www.cnblogs.com/null11/p/7081506.html ...
- 【BZOJ3790】神奇项链(manacher,树状数组)
题意: 思路:生成一些回文拼起来使生成的段数最小 显然存在一种最优的方案,使生成的那些回文是目标串的极长回文子串 求出对于每个位置的最长回文子串,问题就转化成了: 给定一些已知起始和终止位置的线段,求 ...
- js中防止输入为空,或者为字母
function checkNum(){ var num1=document.getElementById("num1").value; var num2=document.get ...
- Sublime Text 3配置支持Markdown编辑
继上一篇http://www.cnblogs.com/EasonJim/p/7119304.html文章安装好之后,对Markdown支持需要做如下处理: 1.按下[Ctrl]+[Shift]+[P] ...
- 1.4-动态路由协议OSPF⑥
OSPF Network Type/网络类型 (Run Mode/运行模式) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 物理 ...
- IOS开发之block应用
非常长时间都是在学习各位大神的力作,并汲取了不少养料,在此一并谢过各位大神了. 当然了.好东西是要跟大家一起分享的,近期发现了几个很不错的个人网站,都是介绍IOS开发的.当中有唐巧.破船之长.池建强. ...
- 【敬业福bug】支付宝五福卡敬业福太难求 被炒至200元
016年央视春晚官方独家互动合作伙伴--支付宝,正式上线春晚红包玩法集福卡活动. 用户新加入10个支付宝好友,就可以获成3张福卡.剩下2张须要支付宝好友之间相互赠送.交换,终于集齐5张福卡就有机会平分 ...
- 处理new分配内存失败情况
转自:http://www.51testing.com/html/70/n-827070.html 在C++语言中,我们经常会使用new给一个对象分配内存空间,而当内存不够会出现内存不足的情况.C++ ...
- Unix域套接字(Unix Domain Socket)介绍【转】
本文转载自:http://blog.csdn.net/roland_sun/article/details/50266565 版权声明:本文为博主原创文章,未经博主允许不得转载. 在Linux系统中, ...
- How do browser cookie domains work?
https://stackoverflow.com/questions/1062963/how-do-browser-cookie-domains-work 答案一 Although there is ...