TensorFlow-Gpu环境搭建——Win10+ Python+Anaconda+cuda
参考:http://blog.csdn.net/sb19931201/article/details/53648615
https://segmentfault.com/a/1190000009803319
python版本tensorflow分为Cpu版本和Gpu版本,Nvidia的Gpu非常适合机器学校的训练
python和tensorflow的安装较简单,可以参考上面的链接,主要是通过Anaconda来管理。
使用Nvidia的Gpu,需要安装Cuda和cudnn
需要注意
1、显卡是否支持GPU加速
2、软件的版本
windows 10--python 3.5--tensorflow-gpu 1.4.0--cuda cuda_8.0.61_win10 --cudnn-8.0-windows10-x64-v6.0
Cuda
The NVIDIA® CUDA® Toolkit provides a development environment for creating high performance GPU-accelerated applications. With the CUDA Toolkit, you can develop, optimize and deploy your applications on GPU-accelerated embedded systems, desktop workstations, enterprise data centers, cloud-based platforms and HPC supercomputers. The toolkit includes GPU-accelerated libraries, debugging and optimization tools, a C/C++ compiler and a runtime library to deploy your application.
介绍及最新版下载地址:https://developer.nvidia.com/cuda-toolkit
cuda个版本下载地址:https://developer.nvidia.com/cuda-toolkit-archive,根据提示安装即可
cudnn
The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers. cuDNN is part of the NVIDIA Deep Learning SDK.
cudnn 是一个dll文件,需要复制到cuda的安装目录的bin文件中
测试代码,使用的是tensorflow官网的代码
import tensorflow as tf
import numpy as np # 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300 # 构造一个线性模型
#
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b # 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss) # 初始化变量
init = tf.initialize_all_variables() # 启动图 (graph)
sess = tf.Session()
sess.run(init) # 拟合平面
for step in range(0, 201):
sess.run(train)
if step % 20 == 0:
print (step, sess.run(W), sess.run(b)) # 得到最佳拟合结果 W: [[0.100 0.200]], b: [0.300]
输出结果:
可以看到显卡的计算能力是6.1
D:\Tools\Anaconda35\python.exe D:/PythonProj/tensorFlow/tensor8.py
WARNING:tensorflow:From D:\Tools\Anaconda35\lib\site-packages\tensorflow\python\util\tf_should_use.py:107: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2017-11-19 17:08:40.225423: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2017-11-19 17:08:40.882335: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Found device 0 with properties:
name: GeForce GTX 1060 3GB major: 6 minor: 1 memoryClockRate(GHz): 1.7085
pciBusID: 0000:01:00.0
totalMemory: 3.00GiB freeMemory: 254.16MiB
2017-11-19 17:08:40.883414: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1060 3GB, pci bus id: 0000:01:00.0, compute capability: 6.1)
0 [[ 0.29419887 -0.23337287]] [ 1.0515306]
20 [[ 0.00030054 0.03563837]] [ 0.44433528]
40 [[ 0.04815638 0.14494912]] [ 0.35854429]
60 [[ 0.07746208 0.17898612]] [ 0.32386735]
80 [[ 0.09062619 0.19159497]] [ 0.30974501]
100 [[ 0.09614999 0.19658807]] [ 0.30398068]
120 [[ 0.09842454 0.1986087 ]] [ 0.30162627]
140 [[ 0.09935603 0.1994319 ]] [ 0.3006644]
160 [[ 0.09973686 0.19976793]] [ 0.30027145]
180 [[ 0.09989249 0.1999052 ]] [ 0.30011091]
200 [[ 0.09995609 0.19996127]] [ 0.30004531] Process finished with exit code 0
MNIST教程,训练结果比cup版本快了大约百倍
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf #加载训练数据
MNIST_data_folder=r"D:\WorkSpace\tensorFlow\data"
mnist=input_data.read_data_sets(MNIST_data_folder,one_hot=True)
print(mnist.train.next_batch(1))
#
# 建立抽象模型
x = tf.placeholder("float", [None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
y_ = tf.placeholder("float", [None,10])
#权重初始化
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #卷积和池化
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') #第一层卷积
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #第二层卷积
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #密集连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #Dropout
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#输出层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #训练和评估模型
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess = tf.InteractiveSession();
init = tf.global_variables_initializer();
sess.run(init); for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print("test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
TensorFlow-Gpu环境搭建——Win10+ Python+Anaconda+cuda的更多相关文章
- 深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把N ...
- 深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动
前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和108 ...
- 【tensorflow】1.安装Tensorflow开发环境,安装Python 的IDE--PyCharm
================================================== 安装Tensorflow开发环境,安装Python 的IDE--PyCharm 1.PyCharm ...
- Python环境搭建、python项目以docker镜像方式部署到Linux
Python环境搭建.python项目以docker镜像方式部署到Linux 本文的项目是用Python写的,记录了生成docker镜像,然后整个项目在Linux跑起来的过程: 原文链接:https: ...
- 04基于python玩转人工智能最火框架之TensorFlow开发环境搭建
MOOC_VM.vdl.zip 解压之后,得到一个vdl文件.打开virtual box,新建选择类型linuxubuntu 64位. 选择继续,分配2g.使用已有的虚拟硬盘文件,点击选择我们下载的文 ...
- ubuntu16.04+cuda9+cudnn7+tensorflow+pycharm环境搭建
安装环境:ubuntu16.04+cuda9+cudnn7+tensorflow+pycharm 1)前期搭建过程主要是按照这篇博文,对于版本选择,安装步骤都讲得很详细,亲测有效! https://b ...
- TensorFlow 开发环境搭建--Pycharm
今天动手开始搭建TensorFlow开发环境, 用PyCharm来跑MNIST中的例子.记录过程如下 下载安装 (1)首先安装AnaConda, AnaConda可以帮忙去管理安装包,帮忙创建虚拟环境 ...
- TensorFlow实验环境搭建
初衷: 由于系统.平台的原因,网上有各种版本的tensorflow安装教程,基于linux的.mac的.windows的,各有不同,tensorflow的官网也给出了具体的安装命令.但实际上,即使te ...
- Jetson tx2的tensorflow keras环境搭建
其实我一直都在想,搞算法的不仅仅是服务,我们更是要在一个平台上去实现服务,因此,在工业领域,板子是很重要的,它承载着无限的机遇和挑战,当然,我并不是特别懂一些底层的东西,但是这篇博客希望可以帮助有需要 ...
随机推荐
- 互斥的数(codevs 1553)
题目描述 Description 有这样的一个集合,集合中的元素个数由给定的N决定,集合的元素为N个不同的正整数,一旦集合中的两个数x,y满足y = P*x,那么就认为x,y这两个数是互斥的,现在想知 ...
- 在代码动态设置RelativeLayout的属性,比如layout_below
( (RelativeLayout.LayoutParams)holder.ivLvDivider.getLayoutParams()).addRule(RelativeLayout.BELOW, R ...
- [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...
- Linux基本命令总结(初学者可以借鉴学习)
Linux基本常用命令 个人在平时项目中用到的一些常规命令总结下 删除文件夹命令:rm -rf 目录名字 添加模式:按i 退出编辑模式:ese左上角键 首先先按esc退出进入一个模式然后再输入wq或者 ...
- SiteMesh2-sitemesh.xml的PageDecoratorMapper映射器的用法
继上一章http://www.cnblogs.com/EasonJim/p/7083165.html中使用的例子中,是通过decorators.xml文件通过URL匹配进行转换的. 而下面这种方法是通 ...
- gn3 --iou
http://www.wyzc.com/Course/Course/learnAction/id/14049/center/0#lesson/400847 http://www.mamicode.co ...
- spring mvc日期转换(前端到后端,后端到前端)
在做web开发的时候,页面传入的都是String类型,SpringMVC可以对一些基本的类型进行转换,但是对于日期类的转换可能就需要我们配置. 1.如果查询类使我们自己写,那么在属性前面加上@Date ...
- Cannot update identity column 'XXX'
Sqlserver -- 怎样改动设置主键的id能够手动更新? #1 打开表的设计界面 #2 将主键id的is Identity的属性改成No 这样就能够通过Update语句来更新表的主键id了. 怎 ...
- Swift之闭包
swift中闭包是一个非常强大的东西,闭包是自包括的函数代码块,能够在代码中被传递和使用.跟C 和 Objective-C 中的代码块(blocks)非常相似 .这个大家必须掌握!必须掌握! 必须掌握 ...
- CocoaPods pod instal慢、卡住解决方法
CocoaPods pod install慢.卡住解决方法 近期使用CocoaPods来加入第三方类库,不管是运行pod install还是pod update都卡在了Analyzing depend ...