发现每张卡牌最后起到作用只和是否打出去了有关。

而且每张牌打出去的概率和之前的牌打出去的情况有关。

所以我们按照牌的顺序进行DP。

然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案。

直接对系数进行DP即可。

复杂度$\Theta(NTR)$

#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i) double f[250][250],p[250],d[250],ans;
int t,n,r; double ksm(double a,int b)
{
double ret=1.0;
for (;b;a*=a,b>>=1) if (b&1) ret*=a;
return ret;
} int main()
{
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&r); ans=0;
F(i,1,n) scanf("%lf%lf",&p[i],&d[i]);
F(i,1,n) F(j,1,min(n,r)) f[i][j]=0; f[0][0]=1;
F(i,1,n)
{
f[i][0]=f[i-1][0]*ksm(1-p[i],r);
F(j,1,min(n,r))
{
f[i][j]=f[i-1][j-1]*(1-ksm(1-p[i],r-j+1))
+f[i-1][j]*ksm(1-p[i],r-j);
ans+=f[i-1][j-1]*(1-ksm(1-p[i],r-j+1))*d[i];
}
}
// F(i,1,n)F(j,0,n){printf("%.10f%c",f[i][j],j==n?'\n':' ');}
printf("%.10f\n",ans);
}
}

  

BZOJ [HNOI2015]亚瑟王 ——期望DP的更多相关文章

  1. P3239 [HNOI2015]亚瑟王 期望dp

    这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...

  2. P3239 [HNOI2015]亚瑟王 期望 dp

    LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...

  3. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  4. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

  5. [HNOI2015]亚瑟王(期望+DP)

    题解 利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值. 然后我们就需要知道每一个卡牌发动技能的概率. 因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了. 我们使用DP 设dp ...

  6. [HNOI2015]亚瑟王[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 给出\(n\)个技能,每个技能按输入顺序有\(p[i]\)的概率释放并造成\(d[i]\)的伤害.每轮游戏从前往后顺序查看每个技 ...

  7. bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望

    [bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...

  8. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

  9. 【BZOJ4008】【HNOI2015】亚瑟王 [期望DP]

    亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗 ...

随机推荐

  1. C++拾遗(三)——函数

    函数的定义 C++是一种静态强类型语言,对于每一次的函数调用,编译时都会检查其实参,必须与形参类型相同,或可被转换为该类型. 参数传递 普通的非引用类型的参数通过复制对应的实参实现初始化.引用形参直接 ...

  2. iOS Category实现原理

    iOS Category实现原理 实现原理 我们不主动引入 Category 的头文件,Category 中的方法都会被添加进主类中.我们可以通过 - performSelector: 等方式 对 C ...

  3. 洛谷 P2353 背单词

    题目背景 小明对英语一窍不通,令老师十分头疼.于是期末考试前夕,小明被逼着开始背单词…… 题目描述 老师给了小明一篇长度为N的英语文章,然后让小明背M个单词.为了确保小明不会在背单词时睡着,老师会向他 ...

  4. 洛谷 P1276 校门外的树(增强版)

    题目描述 校门外马路上本来从编号0到L,每一编号的位置都有1棵树.有砍树者每次从编号A到B处连续砍掉每1棵树,就连树苗也不放过(记 0 A B ,含A和B):幸运的是还有植树者每次从编号C到D 中凡是 ...

  5. 玄学C语言之scanf,printf

    #include <bits/stdc++.h> using namespace std; int main() { int a,c,d; ]; scanf("%d." ...

  6. iOS,APP退到后台,获取推送成功的内容并且语音播报内容。

    老铁,我今天忙了一下午就为解决这个问题,网上有一些方法,说了一堆关于这个挂到后台收到推送并且获得推送内容的问题,有很多人都说APP挂到后台一会就被杀死.但实际上可以有办法解决的. WechatIMG3 ...

  7. ZendStudio 常用快捷键大全

    应用场景 快捷键 功能 查看快捷键 ctrl+shift+l 显示所有快捷键列表 查看和修改快捷键   打开Window->Preferences->General->keys 修改 ...

  8. Linux C++/C开发所必需的一系列工具

    系统平台下的开发工具.开发环境各有不同.Linux C++/C开发所必需的一系列工具: 1. vi(vim)文本编辑器一个UNIX世界标准的文本编辑器,简约而强大,不论作为开发人员还是系统管理员,熟练 ...

  9. ueditor1.4.3.all.js报错

    .replace( /<[^>/]+>/g, '' ) 转义符问题! 修改为: .replace( /<[^>\/]+>/g, '' )

  10. quartz测试类

    package demo.mytest; import java.text.ParseException; import org.quartz.CronTrigger;import org.quart ...