发现每张卡牌最后起到作用只和是否打出去了有关。

而且每张牌打出去的概率和之前的牌打出去的情况有关。

所以我们按照牌的顺序进行DP。

然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案。

直接对系数进行DP即可。

复杂度$\Theta(NTR)$

#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i) double f[250][250],p[250],d[250],ans;
int t,n,r; double ksm(double a,int b)
{
double ret=1.0;
for (;b;a*=a,b>>=1) if (b&1) ret*=a;
return ret;
} int main()
{
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&r); ans=0;
F(i,1,n) scanf("%lf%lf",&p[i],&d[i]);
F(i,1,n) F(j,1,min(n,r)) f[i][j]=0; f[0][0]=1;
F(i,1,n)
{
f[i][0]=f[i-1][0]*ksm(1-p[i],r);
F(j,1,min(n,r))
{
f[i][j]=f[i-1][j-1]*(1-ksm(1-p[i],r-j+1))
+f[i-1][j]*ksm(1-p[i],r-j);
ans+=f[i-1][j-1]*(1-ksm(1-p[i],r-j+1))*d[i];
}
}
// F(i,1,n)F(j,0,n){printf("%.10f%c",f[i][j],j==n?'\n':' ');}
printf("%.10f\n",ans);
}
}

  

BZOJ [HNOI2015]亚瑟王 ——期望DP的更多相关文章

  1. P3239 [HNOI2015]亚瑟王 期望dp

    这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...

  2. P3239 [HNOI2015]亚瑟王 期望 dp

    LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...

  3. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  4. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

  5. [HNOI2015]亚瑟王(期望+DP)

    题解 利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值. 然后我们就需要知道每一个卡牌发动技能的概率. 因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了. 我们使用DP 设dp ...

  6. [HNOI2015]亚瑟王[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 给出\(n\)个技能,每个技能按输入顺序有\(p[i]\)的概率释放并造成\(d[i]\)的伤害.每轮游戏从前往后顺序查看每个技 ...

  7. bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望

    [bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...

  8. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

  9. 【BZOJ4008】【HNOI2015】亚瑟王 [期望DP]

    亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗 ...

随机推荐

  1. Linux基础知识介绍

    1.Linux知识说明1)文件位置 1)/etc/inittab2)模式介绍 0:挂起模式-不推荐 1:单用户模式-只有管理员可以进入该模式,可以修改root密码,处理有登录权限而没有修改文件的权限问 ...

  2. NBUT 1116 Flandre's Passageway (LIS变形)

    题意: 给一个有n*m格子的矩形,设每格边长100,要从(1,1)走到(n,m)需要耗(n+m)*100,但是其中有一些格子是可以直接穿过的,也就是走对角线,是100*根号2长,给出k个可以穿过的格子 ...

  3. OpenStack安装keyston 错误BError: (pymysql.err.InternalError) (1071, u‘Specified key was too long; max key length is 767 bytes‘) [SQL: u‘\nCREATE TABLE migrate_ver

    折腾了两天的错误,BError: (pymysql.err.InternalError) (1071, u‘Specified key was too long; max key length is ...

  4. Data truncation: Data too long for column 'id' at row 1

    Caused by: java.sql.BatchUpdateException: Data truncation: Data too long for column 'titleimg' at ro ...

  5. CAD交互绘制批注(网页版)

    js中实现代码说明: 动态拖放时的绘制事件: function DynWorldDrawComment( pCustomEntity, pWorldDraw, curPt) { // 得到绘制参数. ...

  6. vue 获取汉字的全拼、简拼、首拼

    1.封装公共方法,获取汉字的全拼.简拼.首拼 export const Pinyin = { _JMcode:{ "-":"", "—":& ...

  7. 第2节 azkaban调度:17、azkaban的两个服务模式的安装

    2.3.3.azkaban两个服务模式安装 1.确认所需软件: Azkaban Web服务安装包 azkaban-web-server-0.1.0-SNAPSHOT.tar.gz Azkaban执行服 ...

  8. delphi win7 and high path

    Close DelphiLocate bordbk120N.dll (C:\Program Files (x86)\CodeGear\RAD Studio\6.0\bin)Make a backup ...

  9. jquery的同步和异步

    之前一直在写JQUERY代码的时候遇到AJAX加载数据都需要考虑代码运行顺序问题.最近的项目用了到AJAX同步.这个同步的意思是当JS代码加载到当前AJAX的时候会把页面里所有的代码停止加载,页面出去 ...

  10. c++ 当输入的数据不符合数据类型时,清理输入流

    if (!cin) { cin.clear(); while (cin.get() != '\n') continue; cout << "Bad input; input pr ...