poj 3311(DP + 状态压缩)
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 5205 | Accepted: 2790 |
Description
The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for 1 or more (up to 10) orders to be processed before he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you to write a program to help him.
Input
Input will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where 1 ≤ n ≤ 10. After this will be n + 1 lines each containing n + 1 integers indicating the times to travel between the pizzeria (numbered 0) and the n locations (numbers 1 to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from location i to j may not be the same as the time to go directly from location j to i. An input value of n = 0 will terminate input.
Output
For each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.
Sample Input
3
0 1 10 10
1 0 1 2
10 1 0 10
10 2 10 0
0
Sample Output
8
题目描述:
给定一系列点,求从0点出发,走完其它点,可以重复走,回到0点的最短路程.
假设n==4,那么点为0,1,2,3;
路径可能为0 1 2 3 0
0 3 2 1 0
0 3 1 2 0
。。。。。。。 等等,
其实就是1到n-1的排列组合,每次有n-1中选择,需要算出每种状态的值,找到最小值,我们可以设到达j点,已经经过了s,s表示经过点的集合。
采用顺推的写法 dp[s | (1 <<k) ][k]=min(dp[s][j]+d[j][k],dp[s | (1<<k)][k]);
d数组为两点之间的最短路.
#include <stdio.h>
#include <cstring >
#include <cstdlib>
#include <iostream>
#define maxn 12
#define inf 0x3f3f3f3f
using namespace std; int n;
int a[maxn][maxn];
int d[maxn][maxn];
int dp[<<maxn][maxn];
inline void init()
{
memset(d,inf,sizeof(d));
}
void floyed()
{
for(int k=;k<n;k++)
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
}
void solve()
{
/* for(int j=1;j<n;j++)
{
//dp[0][j]=d[0][j];
dp[1][j]=d[0][j]; }*/
memset(dp,-,sizeof(dp));
dp[][]=;
for(int s=;s< ( << n);s++)
for(int j=;j<n;j++)
{
if( dp[s][j]!=-)
{
for(int k=;k<n;k++)
{
if( (k!=j))
{
if(dp[s | (<<k)][k]==- || (dp[s |(<<k)][k] > (dp[s][j]+d[j][k])))
dp[s | ( << k)][k]=dp[s][j]+d[j][k];
// cout<<dp[s | (1<<k )][k]<<endl;
} }
}
} int ans=inf;
int s=(<<n)-;
/*for(int j=1;j<n;j++)
{
ans=min(ans,dp[s][j]+d[j][0]);
printf("%d\n",dp[s][j]+d[j][0]); }*/
printf("%d\n",dp[s][]); }
int main()
{
//cout<<(1<<2)<<endl;
// freopen("test.txt","r",stdin);
while(~scanf("%d",&n) && n!=)
{
init();
n++;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
scanf("%d",&a[i][j]);
d[i][j]=a[i][j];
}
floyed();
solve();
}
return ;
}
poj 3311(DP + 状态压缩)的更多相关文章
- poj 3311(状态压缩DP)
poj 3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...
- POJ 3311 【状态压缩DP】
题意: 给n个点,给出矩阵代表i到j单向边的距离. 要求,不介意访问每个点的次数,要求访问完每个点,使得路程总和最小. 思路: 由于不介意访问每个点的次数,所以可以先进行FLOYD求出任意两个点之间的 ...
- poj 3311(floyd+状态压缩)
题目链接:http://poj.org/problem?id=3311 思路:Floyd + 状态压缩DP 题意是有N个城市(1~N)和一个PIZZA店(0),要求一条回路,从0出发,又回到0,而且 ...
- poj 1185(状态压缩DP)
poj 1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...
- poj 3254(状态压缩DP)
poj 3254(状态压缩DP) 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- HDU 1074 Doing Homework (dp+状态压缩)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:学生要完成各科作业, 给出各科老师给出交作业的期限和学生完成该科所需时间, 如果逾期一 ...
- hdu_4352_XHXJ's LIS(数位DP+状态压缩)
题目连接:hdu_4352_XHXJ's LIS 题意:这题花大篇篇幅来介绍电子科大的一个传奇学姐,最后几句话才是题意,这题意思就是给你一个LL范围内的区间,问你在这个区间内最长递增子序列长度恰为K的 ...
- hdu 4352 数位dp + 状态压缩
XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
随机推荐
- [luoguP1772] [ZJOI2006]物流运输(DP + spfa)
传送门 预处理cost[i][j]表示从第i天到第j天起点到终点的最短距离 f[i]表示前i天到从起点到终点的最短距离 f[0] = -K f[i] = min(f[i], f[j - 1] + co ...
- 624. Maximum Distance in Arrays
Problem statement Given m arrays, and each array is sorted in ascending order. Now you can pick up t ...
- 安装Android SDK(东软开源镜像介绍)
启动 Android SDK Manager ,打开主界面,依次选择「Tools」.「Options...」,弹出『Android SDK Manager - Settings』窗口: 在『Andro ...
- Invalid CSRF Token 'null' was found on the request parameter '_csrf' or header 'X-CSRF-TOKEN'
Spring Security :HTTP Status 403-Invalid CSRF Token 'null' was found on the request parameter '_csrf ...
- ES6__Iterator和for...of循环
/** * Iterator和for...of循环 */ // --------------------------------------------------------------- /** ...
- msp430项目编程07
msp430中项目---简单计算器 1.扫描键盘工作原理 2.电路原理说明 3.代码(显示部分) 4.代码(功能实现) 5.项目总结 msp430项目编程 msp430入门学习
- Educational Codeforces Round 50 (Rated for Div. 2) E. Covered Points
注释上都有解析了,就不写了吧,去重的问题就用set解决,并且呢第i个线段最多和其他线段产生i-1个交点,n^2logn. #include <cmath> #include <cst ...
- Windows平台kafka环境的搭建
注意:Kafka的运行依赖于Zookeeper,所以在运行Kafka之前我们需要安装并运行Zookeeper 下载安装文件: http://kafka.apache.org/downloads.htm ...
- Myeclipse配置jad
下载地址:http://pan.baidu.com/s/1bnpMEuF 1.下载jad158g.win.zip 下载后解压.解压缩后将jad.exe拷贝到自定义的文件夹内:我这里用的是D:/jad/ ...
- [转]thrift系列 - 快速入门
原文: http://blog.csdn.net/hrn1216/article/details/51274934 thrift 介绍,入门例子. thrift 是一个RPC框架,实现跨语言 ---- ...