bzoj 3456 城市规划 无向简单连通图个数 多项式求逆
题目大意
求n个点的无向简单连通图个数
做法1
\(f[i]\)表示i个点的无向简单连通图个数
\(g[i]=2^{\frac {i*(i-1)}{2}}\)表示i个点的无向简单图个数(不要求连通)
f[i]就是g[i]减去不连通的情况数
我们枚举\(1\)所在连通块大小\(j\)
则有
\[
\begin{aligned}
f[i]&=g[i]-\sum_{j=1}^{i-1}\binom {i-1}{j-1}f[j]*g[i-j]\\
g[i]-f[i]&=\sum_{j=1}^{i-1}\frac{(i-1)!}{(j-1)!(i-j)!}f[j]*g[i-j]\\
\frac {g[i]}{(i-1)!}-\frac {f[i]}{(i-1)!}&=\sum_{j=1}^{i-1}\frac{f[j]}{(j-1)!}*\frac {g[i-j]}{(i-j)!}\\
\frac {g[i]}{(i-1)!}&=\sum_{j=1}^{i}\frac{f[j]}{(j-1)!}*\frac {g[i-j]}{(i-j)!}\\
A&=B*C\\
B&=A*C^{-1}
\end{aligned}
\]
好了显然了
弄成生成函数求个逆就好了
做法2
\[
\begin{aligned}
\frac {g[i]}{(i-1)!}&=\sum_{j=1}^{i}\frac{f[j]}{(j-1)!}*\frac {g[i-j]}{(i-j)!}\\
提出\frac {f[i]}{(i-1)!}\\
\frac {f[i]}{(i-1)!}&=\frac {g[i]}{(i-1)!}-\sum_{j=1}^{i-1}\frac{f[j]}{(j-1)!}*\frac {g[i-j]}{(i-j)!}\\
\end{aligned}
\]
分治+FFT
做法3
多项式求ln
solution
没时间了先不写了 挖坑
bzoj 3456 城市规划 无向简单连通图个数 多项式求逆的更多相关文章
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]
3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...
- 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)
3456: 城市规划 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 658 Solved: 364 Description 刚刚解决完电力网络的问题 ...
- BZOJ 3456 城市规划 ( NTT + 多项式求逆 )
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...
- [BZOJ 3456]城市规划(cdq分治+FFT)
[BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...
- BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...
- 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...
- bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...
- BZOJ 3456: 城市规划 多项式求逆
Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接 ...
随机推荐
- k8s1.13.0二进制部署-ETCD集群(一)
Kubernetes集群中主要存在两种类型的节点:master.minion节点. Minion节点为运行 Docker容器的节点,负责和节点上运行的 Docker 进行交互,并且提供了代理功能.Ma ...
- centos7-httpd服务器
Apache WEB服务器入门简介: Apache HTTP Server是Apache软件基金会的一个开源的网页服务器,可以运行在几乎所有广泛使用的计算机平台上,由于其跨平台和安全性被广泛使用,是目 ...
- PAT (Basic Level) Practise (中文)-1039. 到底买不买(20)
PAT (Basic Level) Practise (中文)-1039. 到底买不买(20) http://www.patest.cn/contests/pat-b-practise/1039 小红 ...
- 用Windows Native API枚举所有句柄及查找文件句柄对应文件名的方法
枚举所有句柄的方法 由于windows并没有给出枚举所有句柄所用到的API,和进程所拥有的句柄相关的只有GetProcessHandleCount这个函数,然而这个函数只能获取到和进程相关的句柄数,不 ...
- Java基础操作面试题:Map集合排序 需要TreeMap 构造方法参数有比较器 输入字符串,统计A、B、C、D、出现次数,由高到低输出字母和出现次数,使用Map集合完成此题
Map和Collections是同级别的,不能像List排序那样直接用Collections.sort(new Comparator<?>(){ 复写compara方法}); HashMa ...
- cocos2dx 3.x lua 网络加载并且保存资源(unix、linux)
#ifndef __DazzleParkour__TextLoader__ #define __DazzleParkour__TextLoader__ #include <stdio.h> ...
- 测试 code style
c++ #include <iostream> int main(int argc, char *argv[]) { /* An annoying "Hello World&qu ...
- BZOJ 2002 弹飞绵羊(分块)
题目:弹飞绵羊 这道题,据说是lct裸题,但是lct那么高级的数据结构,我并不会,所以采取了学长讲过的分块做法,我们对序列分块,可以定义两个数组,其中一个表示从当前位置跳出当前块需要多少步,另一个数组 ...
- php 正则表达式中的 .*? 表示什么意思
我们知道我 .* 是任意字符,有的时候比较困惑在加个?什么意思. ?是非贪婪模式.*会匹配后面的一切字符,就是到结束的意思加?后就是不贪婪模式,这时要看?后边的字符是什么了,如.*?"的意思 ...
- node 文件下载到本地 (支持中文文件名)
downloadfile:function(req,res,next){ var name= encodeURI(req.query.name); var path= req.query.url; v ...