题目大意

求n个点的无向简单连通图个数

做法1

\(f[i]\)表示i个点的无向简单连通图个数
\(g[i]=2^{\frac {i*(i-1)}{2}}\)表示i个点的无向简单图个数(不要求连通)
f[i]就是g[i]减去不连通的情况数
我们枚举\(1\)所在连通块大小\(j\)
则有
\[
\begin{aligned}
f[i]&=g[i]-\sum_{j=1}^{i-1}\binom {i-1}{j-1}f[j]*g[i-j]\\
g[i]-f[i]&=\sum_{j=1}^{i-1}\frac{(i-1)!}{(j-1)!(i-j)!}f[j]*g[i-j]\\
\frac {g[i]}{(i-1)!}-\frac {f[i]}{(i-1)!}&=\sum_{j=1}^{i-1}\frac{f[j]}{(j-1)!}*\frac {g[i-j]}{(i-j)!}\\
\frac {g[i]}{(i-1)!}&=\sum_{j=1}^{i}\frac{f[j]}{(j-1)!}*\frac {g[i-j]}{(i-j)!}\\
A&=B*C\\
B&=A*C^{-1}
\end{aligned}
\]
好了显然了
弄成生成函数求个逆就好了

做法2

\[
\begin{aligned}
\frac {g[i]}{(i-1)!}&=\sum_{j=1}^{i}\frac{f[j]}{(j-1)!}*\frac {g[i-j]}{(i-j)!}\\
提出\frac {f[i]}{(i-1)!}\\
\frac {f[i]}{(i-1)!}&=\frac {g[i]}{(i-1)!}-\sum_{j=1}^{i-1}\frac{f[j]}{(j-1)!}*\frac {g[i-j]}{(i-j)!}\\
\end{aligned}
\]
分治+FFT

做法3

多项式求ln

solution

没时间了先不写了 挖坑

bzoj 3456 城市规划 无向简单连通图个数 多项式求逆的更多相关文章

  1. 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT

    [题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...

  2. BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]

    3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...

  3. 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)

    3456: 城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 658  Solved: 364 Description 刚刚解决完电力网络的问题 ...

  4. BZOJ 3456 城市规划 ( NTT + 多项式求逆 )

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...

  5. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  6. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  7. 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln

    题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...

  8. bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...

  9. BZOJ 3456: 城市规划 多项式求逆

    Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接 ...

随机推荐

  1. 用户输入和while循环

    函数input()的工作原理 message=input('Tell me something,and I will repeat it back to you:') print(message) 编 ...

  2. (转发)IOS高级开发~Runtime(二)

    一些公用类: @interface ClassCustomClass :NSObject{ NSString *varTest1; NSString *varTest2; NSString *varT ...

  3. matplotlib绘图股票走势图实践

    导入模块 import pandas as pdimport numpy as npfrom pandas import Series,DataFrameimport matplotlib.pyplo ...

  4. 201621123080 《Java程序设计》第13周学习总结

    201621123080 <Java程序设计>第13周学习总结 1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能( ...

  5. paper:synthesizable finit state machine design techniques using the new systemverilog 3.0 enhancements之全0/1/z/x的SV写法

  6. 搭建本地虚拟服务器linux(CentOS 7)的python虚拟环境(Hyper-V演示)

    新建虚拟机->安装CentOS7->新建虚拟交换机:内部网络->CentOS7设置->网络适配器:虚拟交换机:新建虚拟交换机->进入CentOS # cd /etc/sy ...

  7. 在Unix系统上,从源文件、目标文件、可执行文件的编译过程

    是由“编译器驱动”(compiler driver)完成的: unix> gcc -o hello hello.c 在这里,gcc的编译器驱动程序读取源文件hello.c, #include & ...

  8. istio的原理和功能介绍

    目录 1 什么是Istio 2 架构和原理 2.1 Proxy代理 2.2 Mixer混合器 2.3 Pilot引导 2.4 Citadel堡垒 2.5 Galley 3 功能列表 4 性能评估 1 ...

  9. 利用PowerDesigner逆向工程导出PDM模型及生成文档

    原文:利用PowerDesigner逆向工程导出PDM模型及生成文档 最近需要对老项目进行重构优化,由于项目都是好几年前的,相关设计资料很不全,最基本的数据库设计文档都没有,只能利用PowerDesi ...

  10. Angular Vue React 框架中的 CSS

    框架中的 CSS Angular Vue React 三大框架 Angular Vue 内置样式集成 React 一些业界实践 Angular Angular . js (1.x):没有样式集成能力 ...