题意  给你n个点的坐标  求第1个点到第2个点的全部路径中两点间最大距离的最小值

非常水的floyd咯

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=205;
double d[N][N];
int x[N],y[N],n; void floyd()
{
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
d[i][j]=min(d[i][j],max(d[i][k],d[k][j]));
} int main()
{
int cas=0;
while(scanf("%d",&n),n)
{
memset(d,0x3f,sizeof(d));
for(int i=1;i<=n;++i)
{
scanf("%d%d",&x[i],&y[i]);
for(int j=1;j<i;++j)
{
int tx=x[i]-x[j],ty=y[i]-y[j];
d[i][j]=d[j][i]=sqrt(tx*tx+ty*ty);
}
}
floyd();
printf("Scenario #%d\nFrog Distance = %.3f\n\n",++cas,d[1][2]);
}
return 0;
}

Frogger

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty
and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 

Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 

To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 

The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 



You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers
xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is
replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414

Source

POJ 2253 Frogger(最小最大距离)的更多相关文章

  1. poj 2253 Frogger 最小瓶颈路(变形的最小生成树 prim算法解决(需要很好的理解prim))

    传送门: http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  2. poj 2253 Frogger (最小最大路段)【dijkstra】

    <题目链接> 题目大意: 给出青蛙A,B和若干石头的坐标,现青蛙A想到青蛙B那,A可通过任意石头到达B,问从A到B多条路径中最小的最长边. 解题分析: 这是最短路的一类典型题目,与普通的最 ...

  3. 最短路(Floyd_Warshall) POJ 2253 Frogger

    题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...

  4. POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)

    POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...

  5. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

  6. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  7. POJ 2253 ——Frogger——————【最短路、Dijkstra、最长边最小化】

    Frogger Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  8. POJ 2253 Frogger Floyd

    原题链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  9. POJ 2253 Frogger

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

随机推荐

  1. 洛谷 [P3623] 免费道路

    有 k 条特殊边的生成树 我们发现有一些边是必须的,如果把所有的水泥路都加入并查集,再枚举鹅卵石路,如果这条路能再次加入并查集,说明这条路是必须的 水泥路同样 这样就把必需边求出来了,剩下就可以随意加 ...

  2. border:none;和border:0;的区别

    一.是理论上的性能差异 [border:0;]把border设为“0”像素虽然在页面上看不见,但按border默认值理解,浏览器依然对border-width/border-color进行了渲染,即已 ...

  3. GPIO和门电路

    1. GPIO 1.1 简介 GPIO, General Purpose I/O, 通用输入输出接口, 是最简单的数字输入输出引脚 - 作为输出可以有两种状态: 0和1 - 作为输入,它接收外面输入的 ...

  4. 【转】CentOS 6.0 系统 LAMP(Apache+MySQL+PHP)安装步骤

    一.安装 MySQL 首先来进行 MySQL 的安装.打开超级终端,输入: [root@localhost ~]# yum install mysql mysql-server 安装完毕,让 MySQ ...

  5. LeetCode OJ-- N-Queens **

    https://oj.leetcode.com/problems/n-queens/ n皇后问题,1皇后有1个解,4皇后2个解,8皇后也有解…… 每个皇后不能在同一行上,同一列上,以及同一条45度线上 ...

  6. Network | TCP

    Transmission Control Protocol, TCP是一种面向连接的.可靠的.基于字节流的传输层通信协议. 应用层向TCP层发送用于网间传输的.用8位字节表示的数据流,然后TCP把数据 ...

  7. Word Break - LeetCode

    Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separa ...

  8. Apollo 分布式配置中心

    1.  介绍 Apollo(阿波罗)是携程框架部门研发的分布式配置中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限.流程治理等特性,适用于微服务配置 ...

  9. Beginning Auto Layout Tutorial in iOS 7: Part 3

    How Auto Layout works 在使用auto layout之前,你可能总是使用initWithFrame或者frame, bounds or center属性. 使用约束的好处在于你不需 ...

  10. 解决unknown import path "golang.org/x/sys/unix": unrecognized import path "golang.org/x/sys"

    问题描述 当我们使用 go get.go install.go mod 等命令时,会自动下载相应的包或依赖包.但由于众所周知的原因,类似于 golang.org/x/... 的包会出现下载失败的情况. ...