同余方程 (codevs1200)
题目描述×××
求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解。
输入输出格式×××
输入格式:
输入只有一行,包含两个正整数 a, b,用一个空格隔开。
输出格式:
输出只有一行,包含一个正整数 x0,即最小正整数解。输入数据保证一定有解。
输入输出样例
3 10
7
说明
【数据范围】
对于 40%的数据,2 ≤b≤ 1,000;
对于 60%的数据,2 ≤b≤ 50,000,000;
对于 100%的数据,2 ≤a, b≤ 2,000,000,000。
NOIP 2012 提高组 第二天 第一题
思路:
这个题与扩展欧几里得求逆元有密切的联系
巧了,题目中的式子正是我们喜闻乐见的求逆元的形式a*x≡1(mod m)
x称为a关于模m的乘法逆元
我们可以将上面那个逆元的式子转化成这个样子
如果在x与m互质的情况下,这不就是一个扩展欧几里得的基本式子吗(gcd(a,m)=1),所以说,这又在gcd(a,m)=1的时候逆元才有整数解,直接套入扩展欧几里得,会得到一组 x, y,然后
就能得到最小解了,因为这个式子:
#include<iostream>
#include<cstdio>
using namespace std;
void gcd(int a,int b,int &x,int &y)
{
if(b==)
{
x=;y=;
return;
}
gcd(b,a%b,x,y);
int temp=x;
x=y;
y=temp-(a/b)*y;
return;
}
int main()
{
int a,b,x,y;
scanf("%d%d",&a,&b);
gcd(a,b,x,y);
while(x<=)x+=b;
cout<<x;
return ;
}
同余方程 (codevs1200)的更多相关文章
- 【codevs1200】 NOIP2012—同余方程
codevs.cn/problem/1200/ (题目链接) 题意 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. Solution 这道题其实就是求${a~mod~b}$的逆元 ...
- NOIP2012同余方程[exgcd]
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整 ...
- NOIP2012同余方程
描述 求关于 x的同余方程 ax ≡ 1(mod b) 的最小正整数解. 输入格式 输入文件 mod.in输入只有一行,包含两个正整数a,b,用一个空格隔开. 输出格式 输出文件 为 modmod ...
- [NOIP2012] 提高组 洛谷P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- POJ 1061 同余方程
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是 它们出发之前忘记了一件很重要的事情,既没有问清楚对方的 ...
- NOIP2012 同余方程-拓展欧几里得
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 数论 - n元线性同余方程的解法
note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- 洛谷P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
随机推荐
- Gemini.Workflow 双子工作流入门教程二:定义流程:流程节点介绍
简介: Gemini.Workflow 双子工作流,是一套功能强大,使用简单的工作流,简称双子流,目前配套集成在Aries框架中. 下面介绍本篇教程:流程定义:流程节点属性. 流程节点: 左侧是节点工 ...
- B. Drazil and His Happy Friends
这是 Codeforces Round #292 (Div. 2)的一道题,原题在这里,题意就是: 小明有n个男同学(编号为 0 ~ n-1)和m个女同学 (编号为 0 ~ m-1),小明要安排男女之 ...
- g2o求解BA 第10章
1.g2o_bal_class.h1.1 projection.hg2o还是用图模型和边,顶点就是相机和路标,边就是观测,就是像素坐标.只不过这里的相机是由旋转(3个参数,轴角形式,就是theta*n ...
- 右上角鼠标滑过展开收缩动画效果js代码的演示页面
http://files.cnblogs.com/files/tanlingdangan/top_right.rar.gz 右上角鼠标滑过展开收缩动画效果js代码的演示页面http://www.51x ...
- redis持久化【转】
Redis是一种高级key-value数据库.它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富.有字符串,链表,集 合和有序集合.支持在服务器端计算集合的并,交和补集(diff ...
- Memcached HA架构探索
https://code.google.com/p/memagent/ 标签:memcached magent 高可用 HA 架构原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者 ...
- redis压力测试详解
redis做压测可以用自带的redis-benchmark工具,使用简单,效果也比较不错. linux下一般无需下载,windows下redis-benchmark压力测试工具下载地址:http:// ...
- 发现eclipse红叉,查看markers发现Target runtime Apache Tomcat v8.0 is not defined
导入以前的项目(Markers中注意查看,就在console选项卡旁边),报以下错误,但不影响操作: Faceted Project Problem Target runtime Apa ...
- checkbox怎么判断是否选中
下面这种可以使用 if($("#checkbox1").is(':checked')) { alert("1"); } else { alert("0 ...
- javascript基础知识整理(不定时更新)
1.js中真与假的定义: 真:true,非零数字,非空字符串,非空对象 假:false,数字零,空字符串,空对象(null),undefined 2.使用for循环对json进行循环操作 for(va ...