BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图
Description
给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得
Input
Output
输出最大的D
Sample Input
1 2 1
3 1 0
1 2 3
2 3 7
Sample Output
HINT
1<=N<=500
根据乘法分配律可知,对于$b(i,j)$ ,只有$a[i],a[j]$ 都选才会有贡献。
而选择$a[j]$会导致选择$-c[j]$.
可以发现这是个最大权闭合子图的模型。
$S->b[i][j],b[i][j]->c[i],b[i][j]->c[j],c[i]->T$
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 300050
#define M 2000050
#define inf 100000000
int head[N],to[M],nxt[M],flow[M],cnt=1,sum,n;
int dep[N],Q[N],l,r,S,T,idx[510][510],c[510];
inline void add(int u,int v,int f) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0;
}
bool bfs() {
memset(dep,0,sizeof(dep));
l=r=0;Q[r++]=S;dep[S]=1;
while(l<r) {
int x=Q[l++],i;
for(i=head[x];i;i=nxt[i]) {
if(!dep[to[i]]&&flow[i]) {
dep[to[i]]=dep[x]+1;
if(to[i]==T) return 1;
Q[r++]=to[i];
}
}
}
return 0;
}
int dfs(int x,int mf) {
if(x==T) return mf;
int i,nf=0;
for(i=head[x];i;i=nxt[i]) {
if(dep[to[i]]==dep[x]+1&&flow[i]) {
int tmp=dfs(to[i],min(mf-nf,flow[i]));
if(!tmp) dep[to[i]]=0;
nf+=tmp;
flow[i]-=tmp;
flow[i^1]+=tmp;
if(nf==mf) break;
}
}
return nf;
}
void dinic() {
int f;
while(bfs()) while(f=dfs(S,inf)) sum-=f;
printf("%d\n",sum);
}
int main() {
int i,j,x;
scanf("%d",&n);
S=n*n+n+1;T=S+1;
int tot=0;
for(i=1;i<=n;i++) {
for(j=1;j<=n;j++) {
idx[i][j]=++tot;
scanf("%d",&x);
sum+=x;
add(S,tot,x);
}
}
for(i=1;i<=n;i++) {
scanf("%d",&c[i]);
add(i+n*n,T,c[i]);
}
for(i=1;i<=n;i++) {
for(j=1;j<=n;j++) {
add(idx[i][j],n*n+i,inf);
add(idx[i][j],n*n+j,inf);
}
}
dinic();
}
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图的更多相关文章
- BZOJ_4873_[Shoi2017]寿司餐厅_最大权闭合子图
BZOJ_4873_[Shoi2017]寿司餐厅_最大权闭合子图 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=4873 分析:我们发现分数正负 ...
- BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)
Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...
- [TJOI2015] 线性代数 - 最大权闭合子图
展开 \(D=(AB-C)A^T\\ =\sum_{i=1}^n(\sum_{j=1}^na_jb_{j,i}-c_i)a_i\\ =\sum_{i=1}^n\sum_{j=1}^na_ia_jb_{ ...
- b2OJ_1565_[NOI2009]植物大战僵尸_拓扑排序+最大权闭合子图
b2OJ_1565_[NOI2009]植物大战僵尸_拓扑排序+最大权闭合子 题意:n*m个植物,每个植物有分数(可正可负),和能保护植物的位置.只能从右往左吃,并且不能吃正被保护着的,可以一个不吃,求 ...
- bzoj 3996 线性代数 —— 最大权闭合子图
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 把题中的式子拆开看看,发现就是如下关系: 如果 a[i] == 1 && ...
- P2762 太空飞行计划问题 最大权闭合子图
link:https://www.luogu.org/problemnew/show/P2762 题意 承担实验赚钱,但是要花去对应仪器的费用,仪器可能共用.求最大的收益和对应的选择方案. 思路 这道 ...
- P2805 [NOI2009]植物大战僵尸 + 最大权闭合子图 X 拓扑排序
传送门:https://www.luogu.org/problemnew/show/P2805 题意 有一个n * m的地图,你可以操纵僵尸从地图的右边向左边走,走的一些地方是有能量值的,有些地方会被 ...
- BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...
- HDU 3879 Base Station(最大权闭合子图)
经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...
随机推荐
- 获取list,有内容就赋值,根据ID显现NAME,没有显现list
function onTOWN() { var town=mini.get("TOWN_ID"); var town_id =town.getValue(); $.ajax({ u ...
- 小dai浅谈通信网络(一)——引子
说起通信网络,首先来看一个场景: 场景模式: 小明和小刚在闹市碰面. 小明对小刚大声喊道:"小刚,你好啊!" 小刚摇手答到:"你好,小明!" 就这么几句简单的话 ...
- DB2常用命令小结
PS:执行命令前需要进入DB2的账户下:su db2inst1 修改密码:更改相应的操作系统密码即可,windows上可以更改db2admin的密码,linux上更改db2inst1的密码即可,db2 ...
- DB2常用函数
1.char函数 char(current date,ISO)--转换成yyyy-mm-dd char(current date,USA)--转换成mm/dd/yyyy char(current ...
- 转载 jQueryEasyUI Messager基本使用
http://www.cnblogs.com/libingql/archive/2011/07/17/2109020.html 一.jQueryEasyUI下载地址 http://www.jeasyu ...
- Python的基本数据数字、字符串、布尔值及其魔法
基本数据类型介绍 若要把Pyhton的基本数据类型:数字(int).字符串(str).布尔(bool).列表(list).元组(tuple).字典(dict)都分为一个个不同的角色 如:战士,魔法师, ...
- 多重影分身——C#中多线程的使用三(调用方法和传参)
对Thread: 1.使用ThreadStart static void Main(string[] args) { Thread th1=new Thread(new ThreadStart(Say ...
- AngularJS + RequireJS
http://www.startersquad.com/blog/AngularJS-requirejs/ While delivering software projects for startup ...
- 你需要知道的Android拍照适配方案
拍照功能实现 Android 程序上实现拍照功能的方式分为两种:第一种是利用相机的 API 来自定义相机,第二种是利用 Intent 调用系统指定的相机拍照.下面讲的内容都是针对第二种实现方式的适配. ...
- RocketMQ源码 — 九、 RocketMQ延时消息
上一节消息重试里面提到了重试的消息可以被延时消费,其实除此之外,用户发送的消息也可以指定延时时间(更准确的说是延时等级),然后在指定延时时间之后投递消息,然后被consumer消费.阿里云的ons还支 ...