51 nod 1495 中国好区间
1495 中国好区间
阿尔法在玩一个游戏,阿尔法给出了一个长度为n的序列,他认为,一段好的区间,它的长度是>=k的,且该区间的第k大的那个数,一定大于等于T。那么问题来了,阿尔法想知道有多少好的区间。
由于阿尔法的序列长度实在是太大了,无法在规定时间内读入。
他想了一个绝妙的方法。
读入a[0],b,c,p,则a[i]=(a[i-1]*b+c)mod p。
样例解释:
a1~a5分别为47,135,247,35,147
对应的7个区间分别为[1,3],[2,3],[1,4],[2,4],[1,5],[2,5],[3,5]
读入一行,7个数字,表示n(n<=10000000),k(k<=n),T,a[0],b,c,p。
所有数字均为正整数且小于等于10^9。
输出一行表示好区间的个数。
5 2 100 10 124 7 300
7
/*
51 nod 1495 中国好区间 problem:
给你一个公式递推出a[i],问有多少个区间它们的第k大数≥T solve:
枚举每个点作为它的右端点r,找到最靠右的点l使[l,r]间≥T的数有k个. 那个这个r能贡献的区间
个数就是l. hhh-2016/10/01-20:55:47
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <queue>
#include <functional>
#include <math.h>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 1e7 + 1000;
const int inf = 0x3f3f3f3f;
const ll mod = 1000000007;
const double eps = 1e-7;
template<class T> void read(T&num)
{
char CH;
bool F=false;
for(CH=getchar(); CH<'0'||CH>'9'; F= CH=='-',CH=getchar());
for(num=0; CH>='0'&&CH<='9'; num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p)
{
if(!p)
{
puts("0");
return;
}
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} int n,k;
ll T,a,b,c,p;
int ta[maxn];
int pos[maxn];
int main()
{
read(n),read(k),read(T);
read(a),read(b),read(c),read(p);
ta[0] = 0;
memset(pos,0,sizeof(pos));
for(int i = 1; i <= n; i++)
{
ta[i] = ta[i-1];
ll t = (a * b + c ) % p;
if(t >= T)
ta[i] ++ ;
if(!pos[ta[i]] && ta[i])
pos[ta[i]] = i;
a = t;
}
int tpos = k;
while(ta[tpos] < k)
tpos ++ ;
ll ans = 0;
for(int i = tpos;i <= n;i++)
{
int p = pos[ta[i] - k + 1];
ans += p;
}
printf("%I64d\n",ans);
}
51 nod 1495 中国好区间的更多相关文章
- 51 nod 1495 中国好区间 奇葩卡时间题 700ms 卡O(n*log(n)), 思路:O(n)尺取法
题目: 这个题目竟然叫中国好区间,要不要脸.欸,不得不说还蛮顺口的,哈哈哈. 首先我们有一个数组a.可以递推得来,O(n)时间复杂度. 定义left(有效区间的左端点),bigger(有效区间中大于等 ...
- 51nod 1495 中国好区间
阿尔法在玩一个游戏,阿尔法给出了一个长度为n的序列,他认为,一段好的区间,它的长度是>=k的,且该区间的第k大的那个数,一定大于等于T.那么问题来了,阿尔法想知道有多少好的区间. 由于阿尔法的序 ...
- 51 nod 1079 中国剩余定理
1079 中国剩余定理 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % ...
- 51nod1495 中国好区间
双指针扫一遍 #include<cstdio> #include<cstring> #include<cctype> #include<algorithm&g ...
- 51 nod 1766 树上的最远点对(线段树+lca)
1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个 ...
- 51 nod 1439 互质对(Moblus容斥)
1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开 ...
- 51 nod 1427 文明 (并查集 + 树的直径)
1427 文明 题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 安德鲁在玩一个叫“文明”的游戏.大妈正在帮助他. 这个游 ...
- 51 nod 1055 最长等差数列(dp)
1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 ...
- 51 nod 1421 最大MOD值
1421 最大MOD值 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个a数组,里面有n个整数.现在要从中找到两个数字(可以 ...
随机推荐
- 使用Flask-SQLAlchemy管理数据库
SQLAlchemy 是一个很强大的关系型数据库框架,处于数据库抽象层 ,支持多种数据库后台. 提供了高层 ORM,也提供了使用数据库原生 SQL 的低层功能. 安装Flask-SQLAlchemy ...
- Linux 下的权限改变与目录配置
Linux 下的权限改变与目录配置 ./代表本目录的意思. (1):用户与用户组, 1:文件所有者,文件被某一用户所有 2:用户组: 对文件给与一个或者多个用户权限配置 3:其它人: (2):l ...
- JAVA_SE基础——26.[深入解析]局部变量与成员变量的区别
黑马程序员入学blog ... 如果这章节很难懂的话应该返回去先看 JAVA_SE基础--10.变量的作用域 定义的位置上区别: 1. 成员变量是定义在方法之外,类之内的. 2. 局部变量是定义在方 ...
- Python模块configparser(操作配置文件ini)
configparser模块提供对ini文件的增删改查方法. ini文件的数据格式: [name1] attribute1=value1 attribute2=value2 [name2] attri ...
- Linux系统把/home重新挂载到其他硬盘或分区
一开始没有做好规划,导致/home空间不足,再加上分区表不是GPT,导致无法扩展超过2T,因此需要重新划分一块更大的硬盘给/home. 1.把新挂载的4T硬盘进行分区和格式化 2.创建目录 sudo ...
- TortoiseGit安装与使用
公司的源码是在码云上,平时进行项目源码管理和团队开发都会使用到GIT,花了一天时间才将Git搞明白,这是一个工具,我在这里就简单说一下,其安装使用方法,也是对自己学习的总结;本文章适合于刚接触GIT的 ...
- 为什么java中用枚举实现单例模式会更好
代码简洁 这是迄今为止最大的优点,如果你曾经在Java5之前写过单例模式代码,那么你会知道即使是使用双检锁你有时候也会返回不止一个实例对象.虽然这种问题通过改善java内存模型和使用volatile变 ...
- SpringCloud的应用发布(一)SpringCloud的样例工程
前言 这个综合例子创建了 6个微服务应用 一个服务注册中心 SvcReg(EurekaServer),生产中要考虑高可用 一个配置中心 CfgMgr + git目录存储配置(ConfigServer, ...
- SpringMvc采用 http+json 实现前后端交互
演示列表 报文表示 一.Json请求和Json响应 实现:Spring4.1.1.RELEASE + jackson2.4.4+JQuery1.10.2 1.pom.xml <propertie ...
- window.open()参数详解及对浏览器的兼容性
因为篇幅,window.open()浏览器的兼容性请点击 这里 Part1:参数详解 window.open(url,name,param) url:即将打开的子窗口的地址:比如 "http ...