题目描述

永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。

现在有两种操作:

B x y 表示在岛 x 与岛 y 之间修建一座新桥。

Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。

输入输出格式

输入格式:

输入文件第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。 对于 20%的数据 n<=1000,q<=1000 对于 100%的数据 n<=100000,m<=n,q<=300000

输出格式:

对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。

输入输出样例

输入样例#1:

5  1
4 3 2 5 1
1 2
7
Q 3 2
Q 2 1
B 2 3
B 1 5
Q 2 1
Q 2 4
Q 2 3
输出样例#1:

-1
2
5
1
2
题解:
splay+并查集
并查集判断两点是否联通,每个节点对应一个平衡树
splay用启发式合并,通过线段树思想和调整顺序可以做到不用旋转
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=,MAXM=;
int tot2,tot1,s[MAXN],pre[MAXM],ch[MAXM][],key[MAXM];
int size[MAXM],root[MAXN],n,m,set[MAXN],a[MAXN],sz,id[MAXN];
void NewNode(int &x,int fa,int k)
{
if (tot2) x=s[tot2--];
else x=++tot1;
key[x]=k;
size[x]=;
pre[x]=fa;
ch[x][]=ch[x][]=;
}
int find(int x)
{
if (set[x]!=x) set[x]=find(set[x]);
return set[x];
}
void pushup(int x)
{
int lson=ch[x][],rson=ch[x][];
size[x]=size[lson]+size[rson];
}
void insert(int &x,int l,int r,int d)
{
x=++sz;
if (l==r)
{
size[x]=;
return;
}
int mid=(l+r)>>;
if(d<=mid) insert(ch[x][],l,mid,d);
else insert(ch[x][],mid+,r,d);
pushup(x);
}
int merge(int x,int y)
{
if (!x) return y;
if (!y) return x;
ch[x][]=merge(ch[x][],ch[y][]);
ch[x][]=merge(ch[x][],ch[y][]);
pushup(x);
return x;
}
int query(int x,int l,int r,int k)
{
if(l==r) return l;
int mid=(l+r)>>;
if(size[ch[x][]]>=k) return query(ch[x][],l,mid,k);
else return query(ch[x][],mid+,r,k-size[ch[x][]]);
}
void erase(int r)
{
if (!r) return ;
s[++tot2]=r;
erase(ch[r][]);
erase(ch[r][]);
}
void bridge_union(int x,int y)
{
int l=find(x),r=find(y);
if (l!=r)
{
if (size[root[l]]<size[root[r]]) swap(l,r);
set[r]=l;size[root[l]]+=size[root[r]];
merge(root[l],root[r]);
erase(root[r]);
}
}
char get_op()
{
char ch=getchar();
while (ch!='B'&&ch!='Q') ch=getchar();
return ch;
}
int main()
{int i,j,x,y,q,opt;
cin>>n>>m;
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
id[a[i]]=i;
set[i]=i;
}
for (i=;i<=n;i++)
insert(root[i],,n,a[i]);
for (i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
bridge_union(x,y);
}
cin>>q;
for (i=;i<=q;i++)
{
opt=get_op();
scanf("%d%d",&x,&y);
if (opt=='Q')
{
int l=find(x);
if (size[root[l]]<y) printf("-1\n");
else
printf("%d\n",id[query(root[l],,n,y)]);
}
else
{
bridge_union(x,y);
}
}
}

[HNOI2012]永无乡的更多相关文章

  1. BZOJ 2733: [HNOI2012]永无乡 启发式合并treap

    2733: [HNOI2012]永无乡 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  2. bzoj 2733: [HNOI2012]永无乡 离线+主席树

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1167  Solved: 607[Submit][Status ...

  3. BZOJ 2733: [HNOI2012]永无乡(treap + 启发式合并 + 并查集)

    不难...treap + 启发式合并 + 并查集 搞搞就行了 --------------------------------------------------------------------- ...

  4. BZOJ 2733: [HNOI2012]永无乡 [splay启发式合并]

    2733: [HNOI2012]永无乡 题意:加边,询问一个连通块中k小值 终于写了一下splay启发式合并 本题直接splay上一个节点对应图上一个点就可以了 并查集维护连通性 合并的时候,把siz ...

  5. B20J_2733_[HNOI2012]永无乡_权值线段树合并

    B20J_2733_[HNOI2012]永无乡_权值线段树合并 Description:n座岛,编号从1到n,每座岛都有自己的独一无二的重要度,按照重要度可以将这n座岛排名,名次用1到 n来表示.某些 ...

  6. 线段树合并+并查集 || BZOJ 2733: [HNOI2012]永无乡 || Luogu P3224 [HNOI2012]永无乡

    题面:P3224 [HNOI2012]永无乡 题解: 随便写写 代码: #include<cstdio> #include<cstring> #include<iostr ...

  7. bzoj2733: [HNOI2012]永无乡 启发式合并

    地址:http://www.lydsy.com/JudgeOnline/problem.php?id=2733 题目: 2733: [HNOI2012]永无乡 Time Limit: 10 Sec   ...

  8. [HNOI2012]永无乡 线段树合并

    [HNOI2012]永无乡 LG传送门 线段树合并练手题,写这篇博客只是为了给我的这篇文章找个板子题. 并查集维护连通性,对于不在同一个连通块内的合并操作每次直接合并两颗线段树,复杂度\(O(n \l ...

  9. bzoj2733 / P3224 [HNOI2012]永无乡(并查集+线段树合并)

    [HNOI2012]永无乡 每个联通块的点集用动态开点线段树维护 并查集维护图 合并时把线段树也合并就好了. #include<iostream> #include<cstdio&g ...

  10. bzoj 2733: [HNOI2012]永无乡 -- 线段树

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...

随机推荐

  1. c语言第1次作业

    一.PTA实验作业 题目1:7-3 温度转换 本题要求编写程序,计算华氏温度150°F对应的摄氏温度.计算公式:C=5×(F−32)/9,式中:C表示摄氏温度,F表示华氏温度,输出数据要求为整型. 1 ...

  2. 22.C++- 继承与组合,protected访问级别

    在C++里,通过继承和组合实现了代码复用,使得开发效率提高,并且能够通过代码看到事物的关系 组合比继承简单,所以在写代码时先考虑能否组合,再来考虑继承. 组合的特点 将其它类的对象作为当前类的成员使用 ...

  3. python构造一个freebuf新闻发送脚本

    前言: 放假学习完web漏洞后.想写一个脚本 然而自己菜无法像大佬们一样写出牛逼的东西 尝试写了,都以失败告终. 还有一个原因:上学时间不能及时看到,自己也比较懒.邮件能提醒自己. 需要安装的模块: ...

  4. Web Api 过滤器之 ExceptionFilter 异常过滤器

    一.服务器出现异常,会统一向客户端返回 500 的错误. [RoutePrefix("api/test")] public class TestController : ApiCo ...

  5. Web Api 利用 cors 实现跨域

    一.安装 cors 二.修改 Web.config <appSettings> <add key="cors:allowedMethods" value=&quo ...

  6. MSIL实用指南-生成if...else...语句

    if...else...语句是非常重要的选择语句,它的生成一般需要ILGenerator的DefineLabel方法和MarkLabel方法,以及Brtrue_S和Br_S指令. 一.DefineLa ...

  7. SpringMvc采用 http+json 实现前后端交互

    演示列表 报文表示 一.Json请求和Json响应 实现:Spring4.1.1.RELEASE + jackson2.4.4+JQuery1.10.2 1.pom.xml <propertie ...

  8. iOS 封装.framework 以及使用

    .framework是什么? .framework是什么? 这个问题相信做iOS的都知道答案. 在我们的日常开发中,经常会用到各种已经封装好的库,比如支付宝.微信SDK等等中的库,这些库可以给我们的开 ...

  9. Java Class文件格式详解

    magic[4字节] 魔数,用来判断是否可以被虚拟机使用.固定值为0xCAFEBABE(咖啡宝贝)minor_version[2字节] 次版本号major_version[2字节] 主版本号,低版本的 ...

  10. Python入门之函数的形式参数与实参/参数的具体使用方法

    本篇目录: 一. 函数参数之形式参数与实参 二. 函数参数的具体使用 #1.位置参数:按照从左到右的顺序定义的参数 位置形参:必选参数 位置实参:按照位置给形参传值 #2.关键字参数:按照key=va ...