残差网络(Residual Networks, ResNets)
1. 什么是残差(residual)?
“残差在数理统计中是指实际观察值与估计值(拟合值)之间的差。”“如果回归模型正确的话, 我们可以将残差看作误差的观测值。”
更准确地,假设我们想要找一个 $x$,使得 $f(x) = b$,给定一个 $x$ 的估计值 $x_0$,残差(residual)就是 $b-f(x_0)$,同时,误差就是 $x-x_0$。
即使 $x$ 不知道,我们仍然可以计算残差,只是不能计算误差罢了。
2. 什么是残差网络(Residual Networks,ResNets)?
在了解残差网络之前,先了解下面这个问题。
Q1:神经网络越深越好吗?(Deeper is better?)
A1:如图 1 所示,在训练集上,传统神经网络越深效果不一定越好。而 Deep Residual Learning for Image Recognition 这篇论文认为,理论上,可以训练一个 shallower 网络,然后在这个训练好的 shallower 网络上堆几层 identity mapping(恒等映射) 的层,即输出等于输入的层,构建出一个 deeper 网络。这两个网络(shallower 和 deeper)得到的结果应该是一模一样的,因为堆上去的层都是 identity mapping。这样可以得出一个结论:理论上,在训练集上,Deeper 不应该比 shallower 差,即越深的网络不会比浅层的网络效果差。但为什么会出现图 1 这样的情况呢,随着层数的增多,训练集上的效果变差?这被称为退化问题(degradation problem),原因是随着网络越来越深,训练变得原来越难,网络的优化变得越来越难。理论上,越深的网络,效果应该更好;但实际上,由于训练难度,过深的网络会产生退化问题,效果反而不如相对较浅的网络。而残差网络就可以解决这个问题的,残差网络越深,训练集上的效果会越好。(测试集上的效果可能涉及过拟合问题。过拟合问题指的是测试集上的效果和训练集上的效果之间有差距。)

图 1 不同深度的传统神经网络效果对比图
(“plain” network指的是没有使用 shortcut connection 的网络)
残差网络通过加入 shortcut connections,变得更加容易被优化。包含一个 shortcut connection 的几层网络被称为一个残差块(residual block),如图 2 所示。

图 2 残差块
2.1 残差块(residual block)
如图 2 所示,$x$ 表示输入,$F(x)$ 表示残差块在第二层激活函数之前的输出,即 $F(x) = W_2\sigma(W_1x)$,其中 $W_1$ 和 $W_2$ 表示第一层和第二层的权重,$\sigma$ 表示 ReLU 激活函数。(这里省略了 bias。)最后残差块的输出是 $\sigma(F(x) + x)$。
当没有 shortcut connection(即图 2 右侧从 $x$ 到 $\bigoplus$ 的箭头)时,残差块就是一个普通的 2 层网络。残差块中的网络可以是全连接层,也可以是卷积层。设第二层网络在激活函数之前的输出为 $H(x)$。如果在该 2 层网络中,最优的输出就是输入 $x$,那么对于没有 shortcut connection 的网络,就需要将其优化成 $H(x) = x$;对于有 shortcut connection 的网络,即残差块,最优输出是 $x$,则只需要将 $F(x) = H(x) - x$ 优化为 0 即可。后者的优化会比前者简单。这也是残差这一叫法的由来。
2.2 残差网络举例
图 3 最右侧就是就是一个残差网络。34-layer 表示含可训练参数的层数为34层,池化层不含可训练参数。图 3 右侧所示的残差网络和中间部分的 plain network 唯一的区别就是 shortcut connections。这两个网络都是当 feature map 减半时,filter 的个数翻倍,这样保证了每一层的计算复杂度一致。
ResNet 因为使用 identity mapping,在 shortcut connections 上没有参数,所以图 3 中 plain network 和 residual network 的计算复杂度都是一样的,都是 3.6 billion FLOPs.

图 3 VGG-19、plain network、ResNet
残差网络可以不是卷积神经网络,用全连接层也可以。当然,残差网络在被提出的论文中是用来处理图像识别问题。
2.3 为什么残差网络会work?
我们给一个网络不论在中间还是末尾加上一个残差块,并给残差块中的 weights 加上 L2 regularization(weight decay),这样图 1 中 $F(x) = 0$ 是很容易的。这种情况下加上一个残差块和不加之前的效果会是一样,所以加上残差块不会使得效果变得差。如果残差块中的隐藏单元学到了一些有用信息,那么它可能比 identity mapping(即 $F(x) = 0$)表现的更好。
"The main reason the residual network works is that it's so easy for these extra layers to learn the identity function that you're kind of guaranteed that it doesn't hurt performance. And then lot of time you maybe get lucky and even helps performance, or at least is easier to go from a decent baseline of not hurting performance, and then creating the same can only improve the solution from there."
残差网络(Residual Networks, ResNets)的更多相关文章
- 残差网络(Residual Network)
一.背景 1)梯度消失问题 我们发现很深的网络层,由于参数初始化一般更靠近0,这样在训练的过程中更新浅层网络的参数时,很容易随着网络的深入而导致梯度消失,浅层的参数无法更新. 可以看到,假设现在需要更 ...
- [DeeplearningAI笔记]卷积神经网络2.3-2.4深度残差网络
4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 [残差网络]--He K, Zhang X, Ren S, et al. Deep Residual Learni ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) ——3.Programming assignments : Residual Networks
Residual Networks Welcome to the second assignment of this week! You will learn how to build very de ...
- Residual Networks
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- 深度残差网(deep residual networks)的训练过程
这里介绍一种深度残差网(deep residual networks)的训练过程: 1.通过下面的地址下载基于python的训练代码: https://github.com/dnlcrl/deep-r ...
- Deep Residual Learning for Image Recognition(残差网络)
深度在神经网络中有及其重要的作用,但越深的网络越难训练. 随着深度的增加,从训练一开始,梯度消失或梯度爆炸就会阻止收敛,normalized initialization和intermediate n ...
- Dual Path Networks(DPN)——一种结合了ResNet和DenseNet优势的新型卷积网络结构。深度残差网络通过残差旁支通路再利用特征,但残差通道不善于探索新特征。密集连接网络通过密集连接通路探索新特征,但有高冗余度。
如何评价Dual Path Networks(DPN)? 论文链接:https://arxiv.org/pdf/1707.01629v1.pdf在ImagNet-1k数据集上,浅DPN超过了最好的Re ...
- 关于深度残差网络(Deep residual network, ResNet)
题外话: From <白话深度学习与TensorFlow> 深度残差网络: 深度残差网络的设计就是为了克服这种由于网络深度加深而产生的学习效率变低,准确率无法有效提升的问题(也称为网络退化 ...
- 吴恩达深度学习笔记(八) —— ResNets残差网络
(很好的博客:残差网络ResNet笔记) 主要内容: 一.深层神经网络的优点和缺陷 二.残差网络的引入 三.残差网络的可行性 四.identity block 和 convolutional bloc ...
随机推荐
- Naive RNN vs LSTM vs GRU
0 Recurrent Neural Network 1 Naive RNN 2 LSTM peephole Naive RNN vs LSTM 记忆更新部分的操作,Naive RNN为乘法,LSTM ...
- GitHub学习笔记:远程端的操控
对于远端,当你新建一个项目的时候,需要在网页处新建,在新建项目的页面,会有一段提示你上传本地项目到此远端方法的代码,直接拷贝粘贴到git shell就可以解决问题,不再详述. 当你把代码上传到一个已经 ...
- 适合Python 新手的5大练手项目,你练了么?
接下来就给大家介绍几种适合新手的练手项目. 0.算法系列-排序与查找 Python写swap很方便,就一句话(a, b = b, a),于是写基于比较的排序能短小精悍.刚上手一门新语言练算法最合适不过 ...
- Alfred效率神器
下图就是Alfred的主界面我们所有的操作都在这一个界面上进行.通过热键打开主界面(本人设置的是option+command),输入一个"a"后Alfred就会为我在候选界面上显示 ...
- 对于spring中事务@Transactional注解的理解
现在spring的配置都喜欢用注解,这边就说下@Transactional 一.如何开启@Transactional支持 要使用@Transactional,spring的配置文件applicatio ...
- mysql 从一个表中查数据,插入另一个表
其实很简单,只是为了忘记,做个记录,用的时候方便. 不管是在网站开发还是在应用程序开发中,我们经常会碰到需要将MySQL或MS SQLServer某个表的数据批量导入到另一个表的情况,甚至有时还需要指 ...
- CS224n笔记0
我准备跟随码农场hankcs大神的脚步,学习一下斯坦福的CS224n课程. 关于该课程的简介,hankcs大神已经写得很清楚了.
- AWS的区域和可用区概念解释
AWS的每个区域一般由多个可用区(AZ)组成,而一个可用区一般是由多个数据中心组成.AWS引入可用区设计主要是为了提升用户应用程序的高可用性.因为可用区与可用区之间在设计上是相互独立的,也就是说它们会 ...
- jmeter利用自身代理录制电脑脚本(一)
在利用代理录制脚本时一定要安装java jdk,不然不能录制的. 没有安装过java jdk安装jmeter后打开时会提示安装jdk,但是mac系统中直接打开提示安装jdk页面后下载的java并不是j ...
- 在线OJ的小demo
牛课网OJ规则 用readLine()代替read_line() 用readLine()代替read_line() 用readLine()代替read_line() 用readLine()代替read ...