PTA 深入虎穴 (正解)和树的同构
在上一篇博客中分享了尝试用单链表修改程序,虽然在Dev上运行没有错误,但是PTA设置的测试点有几个没有通过,具体不清楚问题出现在哪里,所以现在把之前正确的程序放在这里。
著名的王牌间谍 007 需要执行一次任务,获取敌方的机密情报。已知情报藏在一个地下迷宫里,迷宫只有一个入口,里面有很多条通路,每条路通向一扇门。每一扇门背后或者是一个房间,或者又有很多条路,同样是每条路通向一扇门…… 他的手里有一张表格,是其他间谍帮他收集到的情报,他们记下了每扇门的编号,以及这扇门背后的每一条通路所到达的门的编号。007 发现不存在两条路通向同一扇门。
内线告诉他,情报就藏在迷宫的最深处。但是这个迷宫太大了,他需要你的帮助 —— 请编程帮他找出距离入口最远的那扇门。
输入格式:
输入首先在一行中给出正整数 N(<),是门的数量。最后 N 行,第 我行(1)按以下格式描述编号为 i 的那扇门背后能通向的门:
K D[1] D[2] ... D[K]
其中 K 是通道的数量,其后是每扇门的编号。
输出格式:
在一行中输出距离入口最远的那扇门的编号。题目保证这样的结果是唯一的。
输入样例:
13
3 2 3 4
2 5 6
1 7
1 8
1 9
0
2 11 10
1 13
0
0
1 12
0
0
输出样例:
12
根据题目要求和输入形式,分析数据存储结构,跟树结构相似,所以采用二叉树知识进行解题。
每行序号表示门序号,然后是这个门后面通向其他门个数,再来输入通向那些门。所以这个结构就像一个节点,然后它的孩子个数,跟树结构很像。
#include<iostream>
#include<queue>
using namespace std; typedef struct //结构体数组,一个数据域存放门数量,另外用一个指针指向存放通道门序号的数组
{
int doors;//门的数量
int *p; //指向后面门的编号序列
}node; int input(node *a,int n)//读入n扇门的信息 ,并返回跟所在门序号(下标)
{
int i,j;
bool *vi;
vi=new bool[n+];//找出根结点的辅助数组 for(i=;i<n+;i++)
vi[i]=false; for(i=;i<n+;i++)
{
cin>>a[i].doors;
if(a[i].doors)//门后面有通道
{
a[i].p=new int[a[i].doors];//申请存储门后面通道
for(j=;j<a[i].doors;j++)
{
cin>>a[i].p[j];
vi[a[i].p[j]]=true;
}
}
else //door后面没有通向其他门的通道
{
a[i].p=NULL;
} }
for(i=;i<n+;i++)//找出根结点所在下标(起点)
{
if(!vi[i]) return i;
}
} int level(node *a,int r)//从a[r]开始对a数组进行层次遍历,并返回遍历最后一个结点的序号
{//跟二叉树层次遍历相似,找到最远的门,也就是层次遍历最后的那个叶结点
queue<int> q;
int f,i;
q.push(r); while(!q.empty())
{
f=q.front();
q.pop(); if(a[f].doors) //t号门后面有通道门
{
for(i=;i<a[f].doors;i++)
{
q.push(a[f].p[i]);
}
}
}
return f;//遍历到最后一个门序号,即是深度最大叶结点
} int main()
{
node *a;//用于存储整棵树
int n,root;
cin>>n;
a=new node[n+];
root=input(a,n);
// cout<<root;
cout<<level(a,root);
return ;
}
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。
例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1
图2
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
这道题再次用到查找树的根结点的函数,跟之前完全一样,主要实现操作在于判断树同构的算法。
有以下几种情况:
1、两棵树为空,则同构
2、有一棵树为空,则不同构
3、都不为空,但是根结点名称不同,则不同构
4、都不为空,同构时的符合情况:
(1)左1=左2 且 右1=右2
(2)左1=右2 且 右1=左2
第4步判断操作可以基于前面3点,用递归方式实现。
#include<iostream>
#include<queue>
using namespace std; typedef struct
{
char name;
int l,r;
} node; int BuildTree(node T[]) //建立二叉树
{
int i,N;
bool check[]={false};//check数组用于查找树的根节点
char x,y;
cin>>N; if(N)//树结点个数不为0
{
for(i=;i<N;i++)
{
cin>>T[i].name>>x>>y; if(x!='-')//若结点不为空,将节点索引放入左子树结点
{
T[i].l=x-'';
check[T[i].l]=true;//记录此结点索引,在check数组将该位置置为true
}
else
{
T[i].l=-;//若结点为空,将其置为-1
} if(y!='-')//同上,放入右子树
{
T[i].r=y-'';
check[T[i].r]=true;
}
else
{
T[i].r=-;
}
}
for(i=;i<N;i++)//遍历check数组,除了根结点之外,其它元素为true或-1
{
if(!check[i]) return i;//返回根结点下标
}
}
else return -;// 若树为空,返回 -1 } int treetonggou(node t1[],node t2[],int x,int y)//判断两棵树是否同构
{
if(x==-&&y==-) return ;//两棵树为空,同构
else if(x==-||y==-) return ;//有一棵树为空,不同构
else if(t1[x].name!=t2[y].name) return ;//根结点名称不同,不同构
else//递归判断所在根结点是否符合
{
return((treetonggou(t1,t2,t1[x].l,t2[y].l))&&(treetonggou(t1,t2,t1[x].r,t2[y].r))//判断两棵树此结点情况:左=左并且右=右
||(treetonggou(t1,t2,t1[x].l,t2[y].r))&&(treetonggou(t1,t2,t1[x].r,t2[y].l)));//左=右并且右=左
}
} int main()
{
node t1[],t2[];
int r1,r2;
r1=BuildTree(t1);
r2=BuildTree(t2);//cout<<r1<<" "<<r2;
//cout<<treetonggou(t1,t2,r1,r2);
if(treetonggou(t1,t2,r1,r2)) cout<<"Yes";
else cout<<"No";
return ;
}
做这道题开始不是很顺利,问题出在我用递归方式不对,在第4步时候是这样的:
int treetonggou(node t1[],node t2[],int x,int y)
{
if(x==-&&y==-) return ;
else if(x==-||y==-) return ;
else if(t1[x].name!=t2[y].name) return ;
else
{
if((treetonggou(t1,t2,t1[x].l,t2[y].l))&&(treetonggou(t1,t2,t1[x].r,t2[y].r)))
return ;
if((treetonggou(t1,t2,t1[x].l,t2[y].r))&&(treetonggou(t1,t2,t1[x].r,t2[y].l)));
return ;
}
}
看是用了递归函数,之后一分析,其实没有用到前面基础进行递归,而是有自己的返回值了,没有用到递归的思想,在几个测试点没通过,因为没有考虑到各种情况,比如:
遍历结果相同,但树不同构;孩子结点相同,但根结点不同,树不同构。
之后几次修改,得到上面那个很长的return语句,最后通过。
PTA 深入虎穴 (正解)和树的同构的更多相关文章
- pta 编程题6 树的同构
其它pta数据结构编程题请参见:pta 题目请参见:树的同构 因题目中左右子树是按照下标给出,因此用数组存放树是更好的方法. 判断两棵树是否同构:用递归的方法.如果当前两个结点都为空,则返回TRUE: ...
- HDU 4251 --- 主席树(划分树是正解)
题意:查询区间中位数 思路:模板题,相当于区间第K大的数,主席树可以水过,但划分树是正解.但还没搞明白划分树,先上模板 #include <iostream> #include <c ...
- BZOJ3110 K大数查询 【线段树 + 整体二分 或 树套树(非正解)】
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- PTA 03-树1 树的同构 (25分)
题目地址 https://pta.patest.cn/pta/test/15/exam/4/question/711 5-3 树的同构 (25分) 给定两棵树T1和T2.如果T1可以通过若干次左右 ...
- PTA 树的同构 (25分)
PTA 树的同构 (25分) 输入格式: 输入给出2棵二叉树树的信息.对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号):随后N行,第i行对应编号第 ...
- 【BZOJ-4059】Non-boring sequences 线段树 + 扫描线 (正解暴力)
4059: [Cerc2012]Non-boring sequences Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 440 Solved: 16 ...
- CodeForces - 633H :Fibonacci-ish II(正解:莫对+线段树)
Yash is finally tired of computing the length of the longest Fibonacci-ish sequence. He now plays ar ...
- 【PTA】浙江大学数据结构慕课 课后编程作业 03-树1 树的同构
题目内容 给定两棵树T1和T2.如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是"同构"的.例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A.B.G的左右 ...
- [刷题] PTA 03-树1 树的同构
程序: 1 #include <stdio.h> 2 #define MaxTree 10 3 #define ElementType char 4 #define Tree int 5 ...
随机推荐
- (一)linux定时任务的设置 crontab 基础实践
为当前用户创建cron服务 1. 键入 crontab -e 编辑crontab服务文件 例如 文件内容如下: */2 * * * * /bin/sh /home/admin/jiaoben/bu ...
- Spring Boot 2.0 教程 - 配置详解
Spring Boot 可以通过properties文件,YAML文件,环境变量和命令行参数进行配置.属性值可以通过,@Value注解,Environment或者ConfigurationProper ...
- SQL*Loader FAQ
SQL*Loader FAQ: Contents [hide] 1 What is SQL*Loader and what is it used for? 2 How does one use th ...
- javascript系列1--把字符串当代码来执行
转发请标明来源:http://www.cnblogs.com/johnhou/p/javascript.html 请尊重笔者的劳动成果 --John Hou 在javascript中有多种方法可以 ...
- Android 超高仿微信图片选择器 图片该这么加载
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/39943731,本文出自:[张鸿洋的博客] 1.概述 关于手机图片加载器,在当今像 ...
- .net core微服务之基于Docker+Consul+Registrator服务注册服务发现
一.Docker部分: 先拉最新的asp.net core的镜像: docker pull microsoft/aspnetcore 将下载下来的镜像重命名,为什么要重命名?等会讲Registrato ...
- bzoj3812&uoj37 主旋律
正着做不好做,于是我们考虑反着来,如何计算一个点集s的答案呢,一定是所有的方案减去不合法的方案,不合法的方案一定是缩完点后是一个DAG,那么就一定有度数为0的scc,于是我们枚举s的子集,就是说这些点 ...
- 去除vue项目中的#及其ie9兼容性
一.如何去除vue项目中访问地址的# vue2中在路由配置中添加mode(vue-cli创建的项目在src/router/index.js) export default new Router({ m ...
- css3 深入理解flex布局
一.简要介绍 css3最喜欢的新属性之一便是flex布局属性,用六个字概括便是简单.方便.快速. flex( flexible box:弹性布局盒模型),是2009年w3c提出的一种可以简洁.快速弹性 ...
- django 多对多自定义第三张表时的注意事项
杂交(自定义第三张表+ManyToManyField) # modles.py class Boy(models.Model): name = models.CharField(max_length= ...