leetcode 37. Sudoku Solver 36. Valid Sudoku 数独问题
三星机试也考了类似的题目,只不过是要针对给出的数独修改其中三个错误数字,总过10个测试用例只过了3个与世界500强无缘了
36. Valid Sudoku
Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules.
The Sudoku board could be partially filled, where empty cells are filled with the character '.'.
![]()
A partially filled sudoku which is valid.
Note:
A valid Sudoku board (partially filled) is not necessarily solvable. Only the filled cells need to be validated.
Subscribe to see which companies asked this question
Idea
Just go through all you see (like "7 in row 3") and check for duplicates.
Solution 1
Using Counter. One logical line, seven physical lines.
def isValidSudoku(self, board):
return 1 == max(collections.Counter(
x
for i, row in enumerate(board)
for j, c in enumerate(row)
if c != '.'
for x in ((c, i), (j, c), (i/3, j/3, c))
).values() + [1])
The + [1] is only for the empty board, where max would
get an empty list and complain. It's not necessary to get it accepted here, as the empty board isn't among the test cases, but it's good to have.
Solution 2
Using len(set).
def isValidSudoku(self, board):
seen = sum(([(c, i), (j, c), (i/3, j/3, c)]
for i, row in enumerate(board)
for j, c in enumerate(row)
if c != '.'), [])
return len(seen) == len(set(seen))
Solution 3
Using any.
def isValidSudoku(self, board):
seen = set()
return not any(x in seen or seen.add(x)
for i, row in enumerate(board)
for j, c in enumerate(row)
if c != '.'
for x in ((c, i), (j, c), (i/3, j/3, c)))
Solution 4
Iterating a different way.
def isValidSudoku(self, board):
seen = sum(([(c, i), (j, c), (i/3, j/3, c)]
for i in range(9) for j in range(9)
for c in [board[i][j]] if c != '.'), [])
return len(seen) == len(set(seen))
Clean and Easy82ms Python
class Solution(object):
def isValidSudoku(self, board):
"""
:type board: List[List[str]]
:rtype: bool
"""
big = set()
for i in xrange(0,9):
for j in xrange(0,9):
if board[i][j]!='.':
cur = board[i][j]
if (i,cur) in big or (cur,j) in big or (i/3,j/3,cur) in big:
return False
big.add((i,cur))
big.add((cur,j))
big.add((i/3,j/3,cur))
37. Sudoku Solver
Write a program to solve a Sudoku puzzle by filling the empty cells.
Empty cells are indicated by the character '.'.
You may assume that there will be only one unique solution.
![]()
A sudoku puzzle...
![]()
...and its solution numbers marked in red.
Subscribe to see which companies asked this question
最快的解决方案:
Sharing my 2ms C++ solution with comments and explanations.
3,937 views
Update: there's a follow-up
0ms solution which is even more optimized
This is one of the fastest Sudoku solvers I've ever written. It is compact enough - just 150 lines of C++ code with comments. I thought it'd be interesting to share it, since it combines several techniques like
reactive network update propagation and backtracking with very aggressive pruning.
The algorithm is online - it starts with an empty board and as you add numbers to it, it starts solving the Sudoku.
Unlike in other solutions where you have bitmasks of allowed/disallowed values per row/column/square, this solution track bitmask for every(!) cell, forming a set of constraints for the allowed values for each particular
cell. Once a value is written into a cell, new constraints are immediately propagated to row, column and 3x3 square of the cell. If during this process a value of other cell can be unambiguously deduced - then the value is set, new constraints are propagated,
so on.... You can think about this as an implicit reactive network of cells.
If we're lucky (and we'll be lucky for 19 of 20 of Sudokus published in magazines) then Sudoku is solved at the end (or even before!) processing of the input.
Otherwise, there will be empty cells which have to be resolved. Algorithm uses backtracking for this purpose. To optimize it, algorithm starts with the cell with the smallest ambiguity. This could be improved even
further by using priority queue (but it's not implemented here). Backtracking is more or less standard, however, at each step we guess the number, the reactive update propagation comes back into play and it either quickly proves that the guess is unfeasible
or significantly prunes the remaining search space.
It's interesting to note, that in this case taking and restoring snapshots of the compact representation of the state is faster than doing backtracking rollback by "undoing the moves".
class Solution {
struct cell // encapsulates a single cell on a Sudoku board
{
uint8_t value; // cell value 1..9 or 0 if unset
// number of possible (unconstrained) values for the cell
uint8_t numPossibilities;
// if bitset[v] is 1 then value can't be v
bitset<10> constraints;
cell() : value(0), numPossibilities(9),constraints() {};
};
array<array<cell,9>,9> cells;
// sets the value of the cell to [v]
// the function also propagates constraints to other cells and deduce new values where possible
bool set(int i, int j, int v)
{
// updating state of the cell
cell& c = cells[i][j];
if (c.value == v)
return true;
if (c.constraints[v])
return false;
c.constraints = bitset<10>(0x3FE); // all 1s
c.constraints.reset(v);
c.numPossibilities = 1;
c.value = v;
// propagating constraints
for (int k = 0; k<9; k++) {
// to the row:
if (i != k && !updateConstraints(k, j, v))
return false;
// to the column:
if (j != k && !updateConstraints(i, k, v))
return false;
// to the 3x3 square:
int ix = (i / 3) * 3 + k / 3;
int jx = (j / 3) * 3 + k % 3;
if (ix != i && jx != j && !updateConstraints(ix, jx, v))
return false;
}
return true;
}
// update constraints of the cell i,j by excluding possibility of 'excludedValue'
// once there's one possibility left the function recurses back into set()
bool updateConstraints(int i, int j, int excludedValue)
{
cell& c = cells[i][j];
if (c.constraints[excludedValue]) {
return true;
}
if (c.value == excludedValue) {
return false;
}
c.constraints.set(excludedValue);
if (--c.numPossibilities > 1)
return true;
for (int v = 1; v <= 9; v++) {
if (!c.constraints[v]) {
return set(i, j, v);
}
}
assert(false);
}
// backtracking state - list of empty cells
vector<pair<int, int>> bt;
// find values for empty cells
bool findValuesForEmptyCells()
{
// collecting all empty cells
bt.clear();
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
if (!cells[i][j].value)
bt.push_back(make_pair(i, j));
}
}
// making backtracking efficient by pre-sorting empty cells by numPossibilities
sort(bt.begin(), bt.end(), [this](const pair<int, int>&a, const pair<int, int>&b) {
return cells[a.first][a.second].numPossibilities < cells[b.first][b.second].numPossibilities; });
return backtrack(0);
}
// Finds value for all empty cells with index >=k
bool backtrack(int k)
{
if (k >= bt.size())
return true;
int i = bt[k].first;
int j = bt[k].second;
// fast path - only 1 possibility
if (cells[i][j].value)
return backtrack(k + 1);
auto constraints = cells[i][j].constraints;
// slow path >1 possibility.
// making snapshot of the state
array<array<cell,9>,9> snapshot(cells);
for (int v = 1; v <= 9; v++) {
if (!constraints[v]) {
if (set(i, j, v)) {
if (backtrack(k + 1))
return true;
}
// restoring from snapshot,
// note: computationally this is cheaper
// than alternative implementation with undoing the changes
cells = snapshot;
}
}
return false;
}
public:
void solveSudoku(vector<vector<char>> &board) {
cells = array<array<cell,9>,9>(); // clear array
// Decoding input board into the internal cell matrix.
// As we do it - constraints are propagated and even additional values are set as we go
// (in the case if it is possible to unambiguously deduce them).
for (int i = 0; i < 9; i++)
{
for (int j = 0; j < 9; j++) {
if (board[i][j] != '.' && !set(i, j, board[i][j] - '0'))
return; // sudoku is either incorrect or unsolvable
}
}
// if we're lucky we've already got a solution,
// however, if we have empty cells we need to use backtracking to fill them
if (!findValuesForEmptyCells())
return; // sudoku is unsolvable
// copying the solution back to the board
for (int i = 0; i < 9; i++)
{
for (int j = 0; j < 9; j++) {
if (cells[i][j].value)
board[i][j] = cells[i][j].value + '0';
}
}
}
};
Simple and Clean Solution / C++
871 views
bool check(vector<vector<char>> &board, int i, int j, char val)
{
int row = i - i%3, column = j - j%3;
for(int x=0; x<9; x++) if(board[x][j] == val) return false;
for(int y=0; y<9; y++) if(board[i][y] == val) return false;
for(int x=0; x<3; x++)
for(int y=0; y<3; y++)
if(board[row+x][column+y] == val) return false;
return true;
}
bool solveSudoku(vector<vector<char>> &board, int i, int j)
{
if(i==9) return true;
if(j==9) return solveSudoku(board, i+1, 0);
if(board[i][j] != '.') return solveSudoku(board, i, j+1);
for(char c='1'; c<='9'; c++)
{
if(check(board, i, j, c))
{
board[i][j] = c;
if(solveSudoku(board, i, j+1)) return true;
board[i][j] = '.';
}
}
return false;
}
public: void solveSudoku(vector<vector>& board) { solveSudoku(board, 0, 0); }
c++ clear solution using dfs, beating 90% c++ coder.
690 views
class Solution {
public:
bool col[10][10],row[10][10],f[10][10];
bool flag = false;
void solveSudoku(vector<vector<char>>& board) {
memset(col,false,sizeof(col));
memset(row,false,sizeof(row));
memset(f,false,sizeof(f));
for(int i = 0; i < 9;i++){
for(int j = 0; j < 9;j++){
if(board[i][j] == '.') continue;
int temp = 3*(i/3)+j/3;
int num = board[i][j]-'0';
col[j][num] = row[i][num] = f[temp][num] = true;
}
}
dfs(board,0,0);
}
void dfs(vector<vector<char>>& board,int i,int j){
if(flag == true) return ;
if(i >= 9){
flag = true;
return ;
}
if(board[i][j] != '.'){
if(j < 8) dfs(board,i,j+1);
else dfs(board,i+1,0);
if(flag) return;
}
else{
int temp = 3*(i/3)+j/3;
for(int n = 1; n <= 9; n++){
if(!col[j][n] && !row[i][n] && !f[temp][n]){
board[i][j] = n + '0';
col[j][n] = row[i][n] = f[temp][n] = true;
if(j < 8) dfs(board,i,j+1);
else dfs(board,i+1,0);
col[j][n] = row[i][n] = f[temp][n] = false;
if(flag) return;
}
}
board[i][j] = '.';
}
}
};
13-line Python solution, dfs, beats 47.79%
77 views
def solveSudoku(self, board):
def dfs():
for i, row in enumerate(board):
for j, char in enumerate(row):
if char == '.':
for x in s9 - {row[k] for k in r9} - {board[k][j] for k in r9} - \
{board[i / 3 * 3 + m][j / 3 * 3 + n] for m in r3 for n in r3}:
board[i][j] = x
if dfs(): return True
board[i][j] = '.'
return False
return True
r3, r9, s9 = range(3), range(9), {'1', '2', '3', '4', '5', '6', '7', '8', '9'}
dfs()
参考文献:
http://www.cnblogs.com/felixfang/p/3705754.html
leetcode 37. Sudoku Solver 36. Valid Sudoku 数独问题的更多相关文章
- LeetCode:36. Valid Sudoku,数独是否有效
LeetCode:36. Valid Sudoku,数独是否有效 : 题目: LeetCode:36. Valid Sudoku 描述: Determine if a Sudoku is valid, ...
- 【LeetCode】36. Valid Sudoku 解题报告(Python)
[LeetCode]36. Valid Sudoku 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址 ...
- [Leetcode][Python]36: Valid Sudoku
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 36: Valid Sudokuhttps://oj.leetcode.com ...
- [LeetCode] 36. Valid Sudoku 验证数独
Determine if a 9x9 Sudoku board is valid. Only the filled cells need to be validated according to th ...
- [leetcode]36. Valid Sudoku验证数独
Determine if a 9x9 Sudoku board is valid. Only the filled cells need to be validated according to th ...
- leetCode 36.Valid Sudoku(有效的数独) 解题思路和方法
Valid Sudoku Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku bo ...
- 【leetcode】36. Valid Sudoku(判断能否是合法的数独puzzle)
Share Determine if a 9 x 9 Sudoku board is valid. Only the filled cells need to be validated accordi ...
- 【一天一道LeetCode】#36. Valid Sudoku
一天一道LeetCode 本系列文章已全部上传至我的github,地址:https://github.com/Zeecoders/LeetCode 欢迎转载,转载请注明出处 (一)题目 Determi ...
- LeetCode 36 Valid Sudoku
Problem: Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku board ...
随机推荐
- ●BZOJ 3512 DZY Loves Math IV
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3512 题解: $$求ANS=\sum_{i=1}^{N}\sum_{j=1}^{M}\phi ...
- [bzoj2648/2716]SJY摆棋子
平面上有n个点,要求支持插入一个点和查询一个点的最近点距离 n,m<=500000 用kdtree实现,但是复杂度貌似没法保证.....(莫名加了替罪羊重建更慢了...) #include< ...
- Windows系统提供什么样的接口,Unix、Linux系统的用户接口是什么?
Windows:图形化用户界面 Unix.Linux:独立的环境.
- java 第三次作业
(一)学习总结 1.阅读下面程序,分析是否能编译通过?如果不能,说明原因.应该如何修改?程序的运行结果是什么?为什么子类的构造方法在运行之前,必须调用父 类的构造方法?能不能反过来? class Gr ...
- tensorflow rnn 最简单实现代码
tensorflow rnn 最简单实现代码 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf from te ...
- Jenkins简明入门(二) -- 利用Jenkins完成Python程序的build、test、deployment
大家可能还没搞清楚,Jenkins到底能做什么? 本节内容利用Jenkins完成python程序的build.test.deployment,让大家对Jenkins能做的事情有一个直观的了解. 本节内 ...
- GC机制
java虚拟机中的垃圾回收机制是,一个类,当该对象没有更多的应用指向它时,就会被垃圾回收器给回收,从而释放资源.该机制不可以程序员手动调用去回收某个对象,系统自动会去调用,当然程序员可以建议垃圾回收器 ...
- 重新设置Eclipse的workspace路径
有3中方法可以更改workspace的路径设置: 1. 启动Eclipse/MyEclipse后, 打开"Window -> Preferences -> General -&g ...
- Nginx+tomcat配置集群负载均衡
开发的应用采用F5负载均衡交换机,F5将请求转发给5台hp unix服务器,每台服务器有多个webserver实例,对外提供web服务和socket等接口服务.之初,曾有个小小的疑问为何不采用开源的a ...
- linux下内存大小、起始地址的解析与修改
在实际的工作中,由于产品型号的不同,经常需要调整linux所管理的内存的大小,而内核在启动阶段,会两次去解析从uboot传递过来的关于内存的信息,具体如下: 一.解析从uboot传递过来的tag(在p ...