[深度学习] 最全优化方法总结比较--SGD,Adagrad,Adadelta,Adam,Adamax,Nadam
SGD
此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。
SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:
其中,η是学习率,gt是梯度
SGD完全依赖于当前batch的梯度,所以η可理解为允许当前batch的梯度多大程度影响参数更新
缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)
- 选择合适的learning rate比较困难
- 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了
- SGD容易收敛到局部最优,在某些情况下可能被困在鞍点【但是在合适的初始化和学习率设置下,鞍点的影响其实没这么大】
Momentum
momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:
其中,μ是动量因子
特点:
- 下降初期时,使用上一次参数更新,下降方向一致,乘上较大的μ能够进行很好的加速
- 下降中后期时,在局部最小值来回震荡的时候,gradient→0,μ使得更新幅度增大,跳出陷阱
- 在梯度改变方向的时候,μ能够减少更新
总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛
Nesterov
nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。
将上一节中的公式展开可得:
可以看出,mt−1并没有直接改变当前梯度gt,所以Nesterov的改进就是让之前的动量直接影响当前的动量。即:
所以,加上nesterov项后,梯度在大的跳跃后,进行计算对当前梯度进行校正。如下图:
momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)
其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法
Adagrad
Adagrad其实是对学习率进行了一个约束。即:
此处,对gt从1到t进行一个递推形成一个约束项regularizer,−1∑tr=1(gr)2+ϵ√ ,ϵ用来保证分母非0
特点:
- 前期gt较小的时候, regularizer较大,能够放大梯度
- 后期gt较大的时候,regularizer较小,能够约束梯度
- 适合处理稀疏梯度
缺点:
- 由公式可以看出,仍依赖于人工设置一个全局学习率
- η设置过大的话,会使regularizer过于敏感,对梯度的调节太大
- 中后期,分母上梯度平方的累加将会越来越大,使gradient→0,使得训练提前结束
Adadelta
Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。
Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:
在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后:
其中,E代表求期望。
此时,可以看出Adadelta已经不用依赖于全局学习率了。
特点:
- 训练初中期,加速效果不错,很快
- 训练后期,反复在局部最小值附近抖动
RMSprop
RMSprop可以算作Adadelta的一个特例:
当ρ=0.5时,E|g2|t=ρ∗E|g2|t−1+(1−ρ)∗g2t就变为了求梯度平方和的平均数。
如果再求根的话,就变成了RMS(均方根):
此时,这个RMS就可以作为学习率η的一个约束:
特点:
- 其实RMSprop依然依赖于全局学习率
- RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
- 适合处理非平稳目标
- 对于RNN效果很好
Adam
Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:
其中,mt,nt分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望E|gt|,E|g2t|的估计;mt^,nt^是对mt,nt的校正,这样可以近似为对期望的无偏估计。
可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而−mt^nt^√+ϵ对学习率形成一个动态约束,而且有明确的范围。
特点:
- 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
- 对内存需求较小
- 为不同的参数计算不同的自适应学习率
- 也适用于大多非凸优化
- 适用于大数据集和高维空间
Adamax
Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。公式上的变化如下:
可以看出,Adamax学习率的边界范围更简单
Nadam
Nadam类似于带有Nesterov动量项的Adam。公式如下:
可以看出,Nadam对学习率有了更强的约束,同时对梯度的更新也有更直接的影响。一般而言,在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果。
经验之谈
- 对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
- SGD通常训练时间更长,容易陷入鞍点,但是在好的初始化和学习率调度方案的情况下,结果更可靠
- 如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
- Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。
- 在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果
最后展示两张可厉害的图,一切尽在图中啊,上面的都没啥用了… …
损失平面等高线
在鞍点处的比较
引用
[1]Adagrad
[2]RMSprop[Lecture 6e]
[3]Adadelta
[4]Adam
[5]Nadam
[6]On the importance of initialization and momentum in deep learning
[7]Keras中文文档
[8]Alec Radford(图)
[9]An overview of gradient descent optimization algorithms
[10]Gradient Descent Only Converges to Minimizers
[11]Deep Learning:Nature
转: http://blog.csdn.net/u012759136/article/details/52302426
[深度学习] 最全优化方法总结比较--SGD,Adagrad,Adadelta,Adam,Adamax,Nadam的更多相关文章
- 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)(转)
转自: https://zhuanlan.zhihu.com/p/22252270 ycszen 另可参考: https://blog.csdn.net/llx1990rl/article/de ...
- 深度学习最全优化方法总结比较及在tensorflow实现
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010899985/article/d ...
- 深度学习(九) 深度学习最全优化方法总结比较(SGD,Momentum,Nesterov Momentum,Adagrad,Adadelta,RMSprop,Adam)
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. SGD SGD指stoc ...
- 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...
- 深度学习面试题03:改进版梯度下降法Adagrad、RMSprop、Momentum、Adam
目录 Adagrad法 RMSprop法 Momentum法 Adam法 参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法.一般来说,随着迭代 ...
- 深度学习必备:随机梯度下降(SGD)优化算法及可视化
补充在前:实际上在我使用LSTM为流量基线建模时候,发现有效的激活函数是elu.relu.linear.prelu.leaky_relu.softplus,对应的梯度算法是adam.mom.rmspr ...
- 深度学习之卷积神经网络(CNN)详解与代码实现(一)
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...
- 【深度学习】关于Adam
版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_31866177/articl ...
- 【转载】 深度学习之卷积神经网络(CNN)详解与代码实现(一)
原文地址: https://www.cnblogs.com/further-further-further/p/10430073.html ------------------------------ ...
随机推荐
- 单系统登录机制SSO
一.单系统登录机制 1.http无状态协议 web应用采用browser/server架构,http作为通信协议.http是无状态协议,浏览器的每一次请求,服务器会独立处理,不与之前或之后的请求产生关 ...
- RNA测序的质量控制
RNA测序的质量控制 发表评论 3,112 A+ 所属分类:Transcriptomics 收 藏 ENCODE项目向我们揭示,人类基因组中超过70%能得到转录,只不过不会发生在同一个细胞里.为 ...
- Python 多个分隔符 读取逗号和空格分开的数据
str.split() 清除默认 空格和tab 对空格数量不敏感 str.split(' ') 只清除一个空格 对空格数量敏感 l = re.split('[^0-9.]+',s.stri ...
- 解决win10系统无法安装.NET Framework 3.5
方法1:“我的电脑”,单击右键选择“管理” 在打开的“计算机管理”窗口中依路径“服务和应用程序—服务”打开,在列表中找到“Windows Update”并双击打开. 启动类型:自动. 服务状态下面点击 ...
- 20175316盛茂淞 2018-2019-2 《Java程序设计》第2周课上测试总结
20175316 2018-2019-2 <Java程序设计>第2周课上测试总结 上周考试题目总结 题目1 题目要求: 在Ubuntu中用自己的有位学号建一个文件,教材p29 Exampl ...
- Xpath在选择器中正确,在代码中返回的是空列表问题
一.问题: 在进行爬虫的时候我们会用到xpath解析html文件,但是会有一种情况就是在xpath选择器中可以使用,但是在代码中就无法使用的情况. 二.原因: 1.是元素中有tbody的原因,这个元素 ...
- 关于esp32的ADC采集
对于ADC采集 程序源码如下: /* ADC1 Example This example code is in the Public Domain (or CC0 licensed, at your ...
- 《mysql必知必会》学习_第15章_20180806_欢
第15章:联结表 P98 外键:外键为某个表的一列A,同时这一列包含另一个表的主键值B(B属于A,等于或者小于的关系) P99 select vend_name,prod_name,prod_pric ...
- Visual Studio 2017中使用正则修改部分内容
最近在项目中想实现一个小工具,需要根据类的属性<summary>的内容加上相应的[Description]特性,需要实现的效果如下 修改前: /// <summary> /// ...
- 利用树莓派3和RTL-SDR V3搭建一个低成本的QRP小功率监测点
TUTORIAL: SETTING UP A LOW COST QRP (FT8, JT9, WSPR ETC) MONITORING STATION WITH AN RTL-SDR V3 AND R ...