GMA Round 1 极坐标的忧伤
极坐标的忧伤
为什么你们不喜欢为我求导……——极坐标
极坐标的心意,想必已经传达到了,那么请为极坐标方程$r=t$(也写作$ρ=θ$)求导吧。
为了考验你的忠诚,你需要回答$r=t$在(0,$\frac{π}{2}$)处切线的斜率,结果保留六位小数。
Tip:y=f(x)的导函数除了f'(x)外还可以表示成$\frac{dy}{dx}$,其中d表示微分。对于一个参数方程$\begin{cases}x=f(t)\\y=g(t)\end{cases}$(t为参数),求它的导函数往往就需要这种表示法。

不难将给出的极坐标方程化为参数方程:$\begin{cases}x=f(t)=tcost\\y=g(t)=tsint\end{cases}$,根据提示知道f'(t)即是$\frac{dx}{dt}$,g'(t)即是$\frac{dy}{dt}$,而题目要求的是f'(t)即是$\frac{dy}{dx}=\frac{g'(t)}{f'(t)}$,代入$t=\frac{\pi}{2}$可得$-\frac{2}{\pi}$。
定位:中等题、拓展题
GMA Round 1 极坐标的忧伤的更多相关文章
- GMA Round 1 极坐标的愤怒
传送门 极坐标的愤怒 我也想被积分啊!可是为什么你们从来不知道我的心意!——极坐标 愤怒会夺走理智,哪怕是被迫的也好,请为极坐标方程$r=t$(也写作$ρ=θ$)积分吧. 为了考验你的忠诚,你需要回答 ...
- GMA Round 1
学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...
- GMA Round 1 数列与方程
传送门 数列与方程 首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a ...
- GMA Round 1 离心率
传送门 离心率 P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上一点,F1.F2为椭圆左右焦点.△PF1F2内心为M,直线PM与x轴相交于点N,NF1:NF2=4:3. ...
- GMA Round 1 波动函数
传送门 波动函数 f(x)是一个定义在R上的偶函数,f(x)=f(2-x),当$x\in[-1,1]$时,f(x)=cos(x),则函数$g(x)=f(x)-|cos(\pi x)|$,求g(x)在[ ...
- GMA Round 1 新年的复数
传送门 新年的复数 已知$\left\{\begin{matrix}A>B>0\\ AB=1\\ (A+B)(A-B)=2\sqrt{3}\end{matrix}\right.$ 求$(A ...
- GMA Round 1 空降
传送门 空降 在一块100m*100m的平地上,10位战士从天而降!他们每人会均匀随机地落在这个地图上的一个点. 紧随其后,BOSS随机出现在这个地图上的某一点,然后它会奔向位于左上角的出口,而战士们 ...
- GMA Round 1 新程序
传送门 新程序 程序框图如图所示,当输入的n=时,输出结果的ans是多少? 容易看出该程序求n以内质数个数,50以内有15个. 定位:简单题
- GMA Round 1 三角形
传送门 三角形 在△ABC中已知$sin2A+sin2B+sin2C=\frac{3\sqrt{3}}{2}$,求$cos\frac{A}{2}*cos\frac{B}{2}*cos\frac{C}{ ...
随机推荐
- .NET Core在安装(VS2015)与部署
.NET Core开发环境搭建 使用VS2015开发.NET Core项目,环境的搭建可以参考官网,大致安装步骤如下: 1.首先你得装个vs2015 并且保证已经升级至 update3及以上,下载链接 ...
- 分布式一致性算法——paxos
一.什么是paxos算法 Paxos 算法是分布式一致性算法用来解决一个分布式系统如何就某个值(决议)达成一致的问题. 人们在理解paxos算法是会遇到一些困境,那么接下来,我们带着以下几个问题来学习 ...
- node.js版本管理
Node安装 Node的安装需要依赖很多,如gcc等,首先我们需要将这些安装成功,用rpm命令查看下,果然我们并没有gcc等,所以要用yum进行安装(基于centos6.9版本): yum -y in ...
- 怎样把linux客户端用户禁止用 su命令来切换用户
系统中有一个组叫做“wheel”,我们可以利用该组实现一些特殊的功能.我们可以将拥有su使用权限的用户加入到wheel组中并且对该组进行限制,那么只有在该组中的用户才有su的使用权限. 如要实现该功能 ...
- PHP页面间传值的几种方法
方法一:require_once //Page a: <?php $a = "hello"; ?> //Page b: <?php require_once &q ...
- php5.6安装redis各个版本地址集合
igbinary扩展 http://windows.php.net/downloads/pecl/releases/igbinary/2.0.1/ redis扩展 http://windows.php ...
- PHP算法排序之快速排序、冒泡排序、选择排序、插入排序性能对比
<?php //冒泡排序 //原理:从倒数第一个数开始,相邻的两个数比较,后面比前面的小,则交换位置,一直到比较第一个数之后则最小的会排在第一位,以此类推 function bubble_sor ...
- 51Nod1626 B君的梦境 状压dp 矩阵
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1626.html 题目传送门 - 51Nod1626 题意 题解 首先考虑形象的想象本题中的思维空间. ...
- JAVA中值类型和引用类型的不同(面试常考)
转载:https://www.cnblogs.com/1ming/p/5227944.html 1. JAVA中值类型和引用类型的不同? [定义] 引用类型表示你操作的数据是同一个,也就是说当你传一个 ...
- 028 IDEA中下载与上传程序
在学习的时候,更多的时候在使用eclipse,但是在使用过程中,IDEA有时候使用起来更加方便轻松. 关于,在使用过程中的一些常识,这里谢谢写写文档. 一:拉代码 1.说明 在第一次开始项目的时候,需 ...