题目链接

题目为某次雅礼集训...


对于\(\max\{a-A_i,\ A_i-a,\ b-B_i,\ B_i-b\}\),令\(x_1=\frac{a+b}{2},\ y_1=\frac{a-b}{2},\ x_2=\frac{A_i+B_i}{2},\ y_2=\frac{A_i-B_i}{2}\),那么\(\max\)就可以写成\(\max\{x_1-x_2+y_1-y_2,\ -(x_1-x_2)-(y_1-y_2),\ x_1-x_2-(y_1-y_2),\ -(x_1-x_2)+y_1-y_2\}\)。

注意到两项的正负都取到了,我们就可以写成\(\pm(x_1-x_2)\pm(y_1-y_2)=|x_1-x_2|+|y_1-y_2|\)。两项是独立的了,我们可以分别算。

\(x_2,y_2\)是确定的,现在要确定一个\(x_1,y_1\),使得\(\sum|x_1-x_{2,i}|+\sum|y_1-y_{2,i}|\)最小(确定出\(x_1,y_1\)我们显然可以确定出\(a,b\))。

这个问题...考虑一个问题:数轴上有些点,选择一个位置使得它到所有点的距离和最小,就是\(\min\{\sum|p-x_i|\}\),我们取中位数就可以了。

对于\(\sum|x_1-x_{2,i}|\),同样取\(x_2\)的中位数就可以了。区间中位数可以用主席树求。

懒得离散化了...


//6026ms	137.211MiB
#include <cmath>
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5; int A[N],B[N],root1[N],root2[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Segment_Tree
{
#define ls son[x][0]
#define rs son[x][1]
#define S N*35
int tot,sz[S],son[S][2];
LL ans,sum[S];
#undef S
void Insert(int &x,int y,int l,int r,int p)
{
sz[x=++tot]=sz[y]+1, sum[x]=sum[y]+p;
if(l==r) return;
int m=(LL)l+r>>1;//LL!
p<=m?(rs=son[y][1],Insert(ls,son[y][0],l,m,p)):(ls=son[y][0],Insert(rs,son[y][1],m+1,r,p));
}
int Query(int x,int y,int l,int r,int k)//x-y
{
if(l==r) return l;
int m=(LL)l+r>>1,mid,t=sz[ls]-sz[son[y][0]];
if(t>=k)
mid=Query(ls,son[y][0],l,m,k), ans+=sum[rs]-sum[son[y][1]]-1ll*mid*(sz[rs]-sz[son[y][1]]);
else
mid=Query(rs,son[y][1],m+1,r,k-t), ans+=1ll*mid*(sz[ls]-sz[son[y][0]])-(sum[ls]-sum[son[y][0]]);
return mid;
}
}T1,T2; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now*f;
} int main()
{
// freopen("spy.in","r",stdin);
// freopen("spy.out","w",stdout); #define S1 L1,R1
#define S2 L2,R2
int n=read(),q=read(),mnA=1e9,mxA=-1e9,mnB=1e9,mxB=-1e9;
for(int i=1; i<=n; ++i) A[i]=read(),mnA=std::min(mnA,A[i]),mxA=std::max(mxA,A[i]);
for(int i=1; i<=n; ++i) B[i]=read(),mnB=std::min(mnB,B[i]),mxB=std::max(mxB,B[i]);
int L1=mnA+mnB,R1=mxA+mxB,L2=mnA-mxB,R2=mxA-mnB;
for(int i=1; i<=n; ++i) T1.Insert(root1[i],root1[i-1],S1,A[i]+B[i]), T2.Insert(root2[i],root2[i-1],S2,A[i]-B[i]);
for(; q--; )
{
int l=read(),r=read(),p=r-l+2>>1;
T1.ans=0, T2.ans=0, T1.Query(root1[r],root1[l-1],S1,p), T2.Query(root2[r],root2[l-1],S2,p);
printf("%.2lf\n",(T1.ans+T2.ans)*0.5);
} return 0;
}

spy(主席树)的更多相关文章

  1. bzoj3207--Hash+主席树

    题目大意: 给定一个n个数的序列和m个询问(n,m<=100000)和k,每个询问包含k+2个数字:l,r,b[1],b[2]...b[k],要求输出b[1]~b[k]在[l,r]中是否出现. ...

  2. bzoj1901--树状数组套主席树

    树状数组套主席树模板题... 题目大意: 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]--a[ ...

  3. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  4. BZOJ 1146: [CTSC2008]网络管理Network [树上带修改主席树]

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3522  Solved: 1041[Submi ...

  5. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  6. BZOJ 1901: Zju2112 Dynamic Rankings[带修改的主席树]【学习笔记】

    1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 7143  Solved: 2968[Su ...

  7. [bzoj3932][CQOI2015][任务查询系统] (主席树)

    Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si ...

  8. [bzoj2588][count on a tree] (主席树+lca)

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  9. [bzoj2653][middle] (二分 + 主席树)

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b ...

随机推荐

  1. anaconda中的包如何传到pycharm中使用?

    在pycharm的setting中设置 在project interpreter 中的 existing environment 中选择 anaconda3安装目录下的的 python.exe 就可以 ...

  2. Java基础之多线程框架

    一.进程与线程的区别 1.定义: 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比 ...

  3. python 读取指定div的内容

    # -*- coding:utf-8 -*- from bs4 import BeautifulSoup import urllib.request import re # 如果是网址,可以用这个办法 ...

  4. spring cloud config--client

    概述 之前我们简单的搭建了一个单点的config-server服务,实现配置文件的统一管理,本次文章将实现config-client是如何从config-server中获取到统一配置文件信息的 1.创 ...

  5. Python enumerate() 函数

    描述 enumerate() 函数用于将一个可遍历的数据对象(如列表.元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中. Python 2.3. 以上版本可用,2. ...

  6. javaScript中的querySelector()与querySelectorAll()的区别

    之前,在JavaScript获取文档元素一文中,我曾介绍了获取文档元素的几种方法,最后一种方法是通过选择器获取文档元素.它的核心思想便是利用querySelector()或querySelectorA ...

  7. .net C# 抽奖,中奖

    demo设置了8个奖项,每个奖项可以自定义中奖率,精度为1/10000 public string PrizeDraw() { //奖品以及中奖率 const string prizeString = ...

  8. 通过awk 和 sed 将多余的列剔除

    通过awk 和 sed 将多余的列剔除 名词注释: awk -F 指定分隔符 OFS 指定输出分隔符 sed sed "s/|/test/2" a.log 将第二个 | 线替换为 ...

  9. layui简单例子

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  10. dedecms首页入口的详细注释

    今天闲来无事,就拿来dede首页的文件给大家详细解释一遍,以便于新手学习,注释过程非常非常非常的详细,里面解释到dede表前缀#@__代替的原理.解释到dede很多自定义函数的具体位置和具体作用等等疑 ...