题目描述

给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。
将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。

输入

第一行包含三个整数n,m,k(1<=n<=40,1<=m<=1000,1<=k<=10^18)。
接下来m行,每行三个整数u,v,c(1<=u,v<=n,u不等于v,1<=c<=3),表示从u出发有一条到v的单向边,边长为c。
可能有重边。

输出

包含一行一个正整数,即第k短的路径的长度,如果不存在,输出-1。

样例输入

6 6 11
1 2 1
2 3 2
3 4 2
4 5 1
5 3 1
4 6 3

样例输出

4

提示

长度为1的路径有1->2,5->3,4->5。
长度为2的路径有2->3,3->4,4->5->3。
长度为3的路径有4->6,1->2->3,3->4->5,5->3->4。
长度为4的路径有5->3->4->5。

因为边权有三种,但边数比较多,因此不能拆边。但点数比较少可以把每个点拆成三个点,同一个点拆成的三个点要连上边,这样就能使边权都是1了。

很容易想到用二分答案来求第k短路径,但这是log2,显然过不去,因此可以预处理出矩阵乘法的2i的矩阵,每次像倍增lca一样如果能走这么多步就走,不能走就尝试2i-1的矩阵的答案数。

那么怎么统计答案?

可以建一个原点(0号点)连向所有拆点后的原图节点,再将原点连向自己,这样第一行每个数就是原点到达对应点步数小于等于矩阵幂次的总路径数。

但这样求的是2i-1步数的答案,因此还要记录每个点的出度,统计时将每个答案乘上对应点的出度即可。

因为k比较大,矩阵乘法过程中会爆longlong,对于两个数加起来爆longlong,那么结果一定是负数,实际结果也就一定大于k,矩乘和求答案时判一下即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll a[65][125][125];
ll b[125][125];
ll c[125][125];
int mask;
ll ans;
ll K;
int cnt;
int f[45][3];
int v[121];
int n,m;
int x,y,z;
void multiply(ll a[125][125],ll b[125][125],ll c[125][125])
{
for(int i=0;i<=cnt;i++)
{
for(int j=0;j<=cnt;j++)
{
c[i][j]=0;
for(int k=0;k<=cnt;k++)
{
if(a[i][k]&&b[k][j])
{
if(a[i][k]<0||b[k][j]<0)
{
c[i][j]=-1;
break;
}
if(a[i][k]>K/b[k][j])
{
c[i][j]=-1;
break;
}
c[i][j]+=a[i][k]*b[k][j];
if(c[i][j]<0)
{
c[i][j]=-1;
break;
}
}
}
}
}
}
bool check()
{
ll res=0;
for(int i=0;i<=cnt;i++)
{
if(c[0][i]&&v[i])
{
if(c[0][i]<0)
{
return 0;
}
if(c[0][i]>K/v[i])
{
return 0;
}
res+=c[0][i]*v[i];
if(res<0)
{
return 0;
}
}
}
return res<K;
}
int main()
{
scanf("%d%d%lld",&n,&m,&K);
for(int i=1;i<=n;i++)
{
for(int j=0;j<=2;j++)
{
f[i][j]=++cnt;
}
}
a[0][0][0]++;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=1;j++)
{
a[0][f[i][j]][f[i][j+1]]++;
}
a[0][0][f[i][0]]++;
}
while(m--)
{
scanf("%d%d%d",&x,&y,&z);
a[0][f[x][z-1]][f[y][0]]++;
v[f[x][z-1]]++;
}
for(mask=0;(1ll<<mask)<=K*3;mask++);
mask--;
for(int i=1;i<=mask;i++)
{
multiply(a[i-1],a[i-1],a[i]);
}
for(int i=0;i<=cnt;i++)
{
b[i][i]=1;
}
for(int i=mask;i>=0;i--)
{
multiply(b,a[i],c);
if(check())
{
ans|=1ll<<i;
for(int j=0;j<=cnt;j++)
{
for(int k=0;k<=cnt;k++)
{
b[j][k]=c[j][k];
}
}
}
}
ans++;
if(ans>K*3)
{
ans=-1;
}
printf("%lld",ans);
}

BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增的更多相关文章

  1. 【bzoj4386】[POI2015]Wycieczki 矩阵乘法

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  2. BZOJ4386 [POI2015]Wycieczki 矩阵+倍增

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...

  3. BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...

  4. CF_576D_Flights for Regular Customers_矩阵乘法+倍增floyd+bitset+bfs

    CF_576D_Flights for Regular Customers_矩阵乘法+倍增floyd+bitset https://www.luogu.org/problemnew/show/CF57 ...

  5. BZOJ4386 : [POI2015]Wycieczki

    将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...

  6. bzoj 2165: 大楼【Floyd+矩阵乘法+倍增+贪心】

    1<<i的结果需要是long long的话i是long long是没用的--要写成1ll<<i--我别是个傻子吧 虽然写的是二进制贪心,但是我觉得二分可能更好写吧(但是会慢) ...

  7. BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘

    Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...

  8. 【BZOJ-4386】Wycieczki DP + 矩阵乘法

    4386: [POI2015]Wycieczki Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 197  Solved: 49[Submit][Sta ...

  9. CF781D Axel and Marston in Bitland [倍增 矩阵乘法 bitset]

    Axel and Marston in Bitland 好开心第一次补$F$题虽然是$Div.2$ 题意: 一个有向图,每条边是$0$或$1$,要求按如下规则构造一个序列然后走: 第一个是$0$,每次 ...

随机推荐

  1. java 面向对象String类

    1.String类:String 是不可变字符序列 1) char charAt(int index)返回字符串中第 index 个字符. 2) boolean equalsIgnoreCase(St ...

  2. <转>大型分布式网站术语浅析

    夜半睡起看书,看到一篇关于分布式网站性能优化术语的文章,个人觉得不错,分享出来... 原文地址:大型分布式网站术语分析 一.I/O优化 1.增加缓存,减少磁盘的访问次数. 2.优化磁盘的管理系统,设计 ...

  3. java 变量及数据类型、原码、反码、补码

    Java基础——变量及数据类型 变量的概念 内存中的一个存储区域 变量名+数据类型 可在同一类型范围内不断变化 为什么定义变量: 用于不断的存放同一类型的常量,并可以重复使用 使用变量注意: 变量的作 ...

  4. java算法----排序----(5)归并排序

    package log; import java.util.Arrays; public class Test4 { /** * java算法---归并排序 * * @param args */ pu ...

  5. [Oracle]跨DBLINK的JOIN查询的数据库缓存问题15783452141

    客户问到跨DBLINK,结合本地表和远端表的时候,数据在哪一边 的 Data Buffer 缓存. 测试的结果是:本地表在本地缓存,远端表在远端缓存. ####Testcase-0929-10 本地数 ...

  6. 微信小程序:java后台获取openId

    一.功能描述 openId是某个微信账户对应某个小程序或者公众号的唯一标识,但openId必须经过后台解密才能获取(之前实现过前台解密,可是由于微信小程序的种种限制,前台解密无法在小程序发布后使用) ...

  7. 自己动手写把”锁”---LockSupport深入浅出

    本篇是<自己动手写把"锁">系列技术铺垫的最后一个知识点.本篇主要讲解LockSupport工具类,它用来实现线程的挂起和唤醒. LockSupport是Java6引入 ...

  8. 记一次用WPScan辅助渗透WordPress站点

    记一次用WPScan辅助渗透WordPress站点 一.什么是WPScan? WPScan 是一个扫描 WordPress 漏洞的黑盒子扫描器,它可以为所有 Web 开发人员扫描 WordPress ...

  9. swift 各种学习

    swift使用cocoapods引用oc第三方库 1. 创建桥接文件 2. 在主工程的 build Settings 搜索 bridge   设置 Objective-C Bridging Headi ...

  10. php ajax登录注册

    用户登录与退出功能应用在很多地方,而在有些项目中,我们需要使用Ajax方式进行登录,登录成功后只刷新页面局部,从而提升了用户体验度.本文将使用PHP和jQuery来实现登录和退出功能. 准备数据库 本 ...