BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增
题目描述
给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。
将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。
输入
第一行包含三个整数n,m,k(1<=n<=40,1<=m<=1000,1<=k<=10^18)。
接下来m行,每行三个整数u,v,c(1<=u,v<=n,u不等于v,1<=c<=3),表示从u出发有一条到v的单向边,边长为c。
可能有重边。
输出
包含一行一个正整数,即第k短的路径的长度,如果不存在,输出-1。
样例输入
1 2 1
2 3 2
3 4 2
4 5 1
5 3 1
4 6 3
样例输出
提示
长度为1的路径有1->2,5->3,4->5。
长度为2的路径有2->3,3->4,4->5->3。
长度为3的路径有4->6,1->2->3,3->4->5,5->3->4。
长度为4的路径有5->3->4->5。
因为边权有三种,但边数比较多,因此不能拆边。但点数比较少可以把每个点拆成三个点,同一个点拆成的三个点要连上边,这样就能使边权都是1了。
很容易想到用二分答案来求第k短路径,但这是log2,显然过不去,因此可以预处理出矩阵乘法的2i的矩阵,每次像倍增lca一样如果能走这么多步就走,不能走就尝试2i-1的矩阵的答案数。
那么怎么统计答案?
可以建一个原点(0号点)连向所有拆点后的原图节点,再将原点连向自己,这样第一行每个数就是原点到达对应点步数小于等于矩阵幂次的总路径数。
但这样求的是2i-1步数的答案,因此还要记录每个点的出度,统计时将每个答案乘上对应点的出度即可。
因为k比较大,矩阵乘法过程中会爆longlong,对于两个数加起来爆longlong,那么结果一定是负数,实际结果也就一定大于k,矩乘和求答案时判一下即可。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll a[65][125][125];
ll b[125][125];
ll c[125][125];
int mask;
ll ans;
ll K;
int cnt;
int f[45][3];
int v[121];
int n,m;
int x,y,z;
void multiply(ll a[125][125],ll b[125][125],ll c[125][125])
{
for(int i=0;i<=cnt;i++)
{
for(int j=0;j<=cnt;j++)
{
c[i][j]=0;
for(int k=0;k<=cnt;k++)
{
if(a[i][k]&&b[k][j])
{
if(a[i][k]<0||b[k][j]<0)
{
c[i][j]=-1;
break;
}
if(a[i][k]>K/b[k][j])
{
c[i][j]=-1;
break;
}
c[i][j]+=a[i][k]*b[k][j];
if(c[i][j]<0)
{
c[i][j]=-1;
break;
}
}
}
}
}
}
bool check()
{
ll res=0;
for(int i=0;i<=cnt;i++)
{
if(c[0][i]&&v[i])
{
if(c[0][i]<0)
{
return 0;
}
if(c[0][i]>K/v[i])
{
return 0;
}
res+=c[0][i]*v[i];
if(res<0)
{
return 0;
}
}
}
return res<K;
}
int main()
{
scanf("%d%d%lld",&n,&m,&K);
for(int i=1;i<=n;i++)
{
for(int j=0;j<=2;j++)
{
f[i][j]=++cnt;
}
}
a[0][0][0]++;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=1;j++)
{
a[0][f[i][j]][f[i][j+1]]++;
}
a[0][0][f[i][0]]++;
}
while(m--)
{
scanf("%d%d%d",&x,&y,&z);
a[0][f[x][z-1]][f[y][0]]++;
v[f[x][z-1]]++;
}
for(mask=0;(1ll<<mask)<=K*3;mask++);
mask--;
for(int i=1;i<=mask;i++)
{
multiply(a[i-1],a[i-1],a[i]);
}
for(int i=0;i<=cnt;i++)
{
b[i][i]=1;
}
for(int i=mask;i>=0;i--)
{
multiply(b,a[i],c);
if(check())
{
ans|=1ll<<i;
for(int j=0;j<=cnt;j++)
{
for(int k=0;k<=cnt;k++)
{
b[j][k]=c[j][k];
}
}
}
}
ans++;
if(ans>K*3)
{
ans=-1;
}
printf("%lld",ans);
}
BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增的更多相关文章
- 【bzoj4386】[POI2015]Wycieczki 矩阵乘法
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...
- BZOJ4386 [POI2015]Wycieczki 矩阵+倍增
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...
- BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...
- CF_576D_Flights for Regular Customers_矩阵乘法+倍增floyd+bitset+bfs
CF_576D_Flights for Regular Customers_矩阵乘法+倍增floyd+bitset https://www.luogu.org/problemnew/show/CF57 ...
- BZOJ4386 : [POI2015]Wycieczki
将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...
- bzoj 2165: 大楼【Floyd+矩阵乘法+倍增+贪心】
1<<i的结果需要是long long的话i是long long是没用的--要写成1ll<<i--我别是个傻子吧 虽然写的是二进制贪心,但是我觉得二分可能更好写吧(但是会慢) ...
- BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘
Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...
- 【BZOJ-4386】Wycieczki DP + 矩阵乘法
4386: [POI2015]Wycieczki Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 197 Solved: 49[Submit][Sta ...
- CF781D Axel and Marston in Bitland [倍增 矩阵乘法 bitset]
Axel and Marston in Bitland 好开心第一次补$F$题虽然是$Div.2$ 题意: 一个有向图,每条边是$0$或$1$,要求按如下规则构造一个序列然后走: 第一个是$0$,每次 ...
随机推荐
- 【Topcoder 10524】BrickPuzzle
Topcoder 10524 题意:给一个\(n\times m\)的棋盘,上面有一些格子是白色的,需要被一些俄罗斯方块们覆盖,俄罗斯方块有\(4\)种: 然后这些图案不能重叠或超出边界,并且每一个图 ...
- python 对时间操作
from datetime import datetime,timedelta 'date_test':fields.function(_datetime_all,type='datetime', ...
- exec sp_spaceused如何只返回一个结果集(转载)
问: 我想把每天数据库的大小自动保存到table中但是exec sp_spaceused是返回2个表,执行下面的语句出错,如何解决? drop table db_size go create tabl ...
- url 传递中文参数乱码问题的终极解决方法。
估计很多人在做web开发的时候,都会碰到过url传递中文参数,有时候会出现乱码的问题,但有些项目或者环境,又不会有问题.当遇到乱码的时候,上网找了很多解决方案,比如: 页面设置它的编码方式,改成utf ...
- C#断点续传下载。
断点续传 最近在优化之前的下载流程,仅此篇幅留作笔记之用,日后其他研究此类问题的伙伴可以马上了解原理和开发,减少开发成本. 原理:断点续传目前比较通用的是使用HTTP续传方式,相关的资料可以通过访问: ...
- JSP页面<%@ ...%>是什么意思?
这表示是指令,主要用来提供整个JSP 网页相关的信息,并且用来设定JSP网页的相关属性,例如:网页的编码方式.语法.信息等.起始符号为: <%@终止符号为: %>目前有三种指令:page. ...
- mysql操作命令梳理(5)-执行sql语句查询即mysql状态说明
在日常mysql运维中,经常要查询当前mysql下正在执行的sql语句及其他在跑的mysql相关线程,这就用到mysql processlist这个命令了.mysql> show process ...
- D. Too Easy Problems
链接 [http://codeforces.com/group/1EzrFFyOc0/contest/913/problem/D] 题意 给你n个题目,考试时间T,对于每个问题都有一个ai,以及解决所 ...
- QT QProgressBar QProgressDialog 模态,位置设置,无边框,进度条样式
一 关于模态设置 QProgressDialog可以设置模态(需要在new的时候传入parent),QProgressBar设置不好: 只有dialog可以设置模态,widget不能设置模态(QPr ...
- php开启curl不成功原因
1. 在php.ini中找到 ;extension=php_curl.dll, 如果前面有分号, 去掉 2. php_curl.dll (ext目录下, 如果没有, 请下载) , libeay32.d ...