BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增
题目描述
给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。
将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。
输入
第一行包含三个整数n,m,k(1<=n<=40,1<=m<=1000,1<=k<=10^18)。
接下来m行,每行三个整数u,v,c(1<=u,v<=n,u不等于v,1<=c<=3),表示从u出发有一条到v的单向边,边长为c。
可能有重边。
输出
包含一行一个正整数,即第k短的路径的长度,如果不存在,输出-1。
样例输入
1 2 1
2 3 2
3 4 2
4 5 1
5 3 1
4 6 3
样例输出
提示
长度为1的路径有1->2,5->3,4->5。
长度为2的路径有2->3,3->4,4->5->3。
长度为3的路径有4->6,1->2->3,3->4->5,5->3->4。
长度为4的路径有5->3->4->5。
因为边权有三种,但边数比较多,因此不能拆边。但点数比较少可以把每个点拆成三个点,同一个点拆成的三个点要连上边,这样就能使边权都是1了。
很容易想到用二分答案来求第k短路径,但这是log2,显然过不去,因此可以预处理出矩阵乘法的2i的矩阵,每次像倍增lca一样如果能走这么多步就走,不能走就尝试2i-1的矩阵的答案数。
那么怎么统计答案?
可以建一个原点(0号点)连向所有拆点后的原图节点,再将原点连向自己,这样第一行每个数就是原点到达对应点步数小于等于矩阵幂次的总路径数。
但这样求的是2i-1步数的答案,因此还要记录每个点的出度,统计时将每个答案乘上对应点的出度即可。
因为k比较大,矩阵乘法过程中会爆longlong,对于两个数加起来爆longlong,那么结果一定是负数,实际结果也就一定大于k,矩乘和求答案时判一下即可。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll a[65][125][125];
ll b[125][125];
ll c[125][125];
int mask;
ll ans;
ll K;
int cnt;
int f[45][3];
int v[121];
int n,m;
int x,y,z;
void multiply(ll a[125][125],ll b[125][125],ll c[125][125])
{
for(int i=0;i<=cnt;i++)
{
for(int j=0;j<=cnt;j++)
{
c[i][j]=0;
for(int k=0;k<=cnt;k++)
{
if(a[i][k]&&b[k][j])
{
if(a[i][k]<0||b[k][j]<0)
{
c[i][j]=-1;
break;
}
if(a[i][k]>K/b[k][j])
{
c[i][j]=-1;
break;
}
c[i][j]+=a[i][k]*b[k][j];
if(c[i][j]<0)
{
c[i][j]=-1;
break;
}
}
}
}
}
}
bool check()
{
ll res=0;
for(int i=0;i<=cnt;i++)
{
if(c[0][i]&&v[i])
{
if(c[0][i]<0)
{
return 0;
}
if(c[0][i]>K/v[i])
{
return 0;
}
res+=c[0][i]*v[i];
if(res<0)
{
return 0;
}
}
}
return res<K;
}
int main()
{
scanf("%d%d%lld",&n,&m,&K);
for(int i=1;i<=n;i++)
{
for(int j=0;j<=2;j++)
{
f[i][j]=++cnt;
}
}
a[0][0][0]++;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=1;j++)
{
a[0][f[i][j]][f[i][j+1]]++;
}
a[0][0][f[i][0]]++;
}
while(m--)
{
scanf("%d%d%d",&x,&y,&z);
a[0][f[x][z-1]][f[y][0]]++;
v[f[x][z-1]]++;
}
for(mask=0;(1ll<<mask)<=K*3;mask++);
mask--;
for(int i=1;i<=mask;i++)
{
multiply(a[i-1],a[i-1],a[i]);
}
for(int i=0;i<=cnt;i++)
{
b[i][i]=1;
}
for(int i=mask;i>=0;i--)
{
multiply(b,a[i],c);
if(check())
{
ans|=1ll<<i;
for(int j=0;j<=cnt;j++)
{
for(int k=0;k<=cnt;k++)
{
b[j][k]=c[j][k];
}
}
}
}
ans++;
if(ans>K*3)
{
ans=-1;
}
printf("%lld",ans);
}
BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增的更多相关文章
- 【bzoj4386】[POI2015]Wycieczki 矩阵乘法
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...
- BZOJ4386 [POI2015]Wycieczki 矩阵+倍增
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...
- BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...
- CF_576D_Flights for Regular Customers_矩阵乘法+倍增floyd+bitset+bfs
CF_576D_Flights for Regular Customers_矩阵乘法+倍增floyd+bitset https://www.luogu.org/problemnew/show/CF57 ...
- BZOJ4386 : [POI2015]Wycieczki
将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...
- bzoj 2165: 大楼【Floyd+矩阵乘法+倍增+贪心】
1<<i的结果需要是long long的话i是long long是没用的--要写成1ll<<i--我别是个傻子吧 虽然写的是二进制贪心,但是我觉得二分可能更好写吧(但是会慢) ...
- BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘
Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...
- 【BZOJ-4386】Wycieczki DP + 矩阵乘法
4386: [POI2015]Wycieczki Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 197 Solved: 49[Submit][Sta ...
- CF781D Axel and Marston in Bitland [倍增 矩阵乘法 bitset]
Axel and Marston in Bitland 好开心第一次补$F$题虽然是$Div.2$ 题意: 一个有向图,每条边是$0$或$1$,要求按如下规则构造一个序列然后走: 第一个是$0$,每次 ...
随机推荐
- ImageView android:scaleType="centerCrop"
转载地址:http://www.cnblogs.com/yejiurui/archive/2013/02/25/2931767.html 在网上查了好多资料,大致都雷同,大家都是互相抄袭的,看着很费劲 ...
- [03] JSP指令
1.概述 JSP指令用于"转换阶段"提供整个JSP页面的相关信息,影响由JSP页面生成的Servlet的整体结构.指令不会产生任何的输出到当前的输出流中. 指令的基本语法为: &l ...
- sql语句,查询昨天的数据
如果在程序中,有前台传来两个时间点:beginTime和endTime,在sql查询中的限制条件就是查询昨天的数据,那么可以这样写: 但是如果在这里要查询昨天的数据的话, 则不能简单地在开始时间的那里 ...
- MFC入门(一)-- 第一个简单的windows图形化界面小程序(打开计算器,记事本,查IP)
////////////////////////////////序//////////////////////////////// 大约三年前,学过一些简单的编程语言之后其实一直挺苦恼于所写的程序总是 ...
- QueryHelper
[1].[代码] QueryHelper.java 跳至 [1] package my.db; import java.io.Serializable; import java.math.BigInt ...
- .net获取excel表的内容(OleDB方法)
首先引用组件和命名空间 using Microsoft.Office.Interop.Excel; using System.Data.OleDb; 然后把excel上传到指定路径 上传文件方法省略 ...
- Android开发——ListView使用技巧总结(一)
)还有一点就是要控制异步任务的执行频率,因为当用户频繁的上下滑动,会瞬间产生上百个异步任务,会带来无意义的大量的UI更新操作,因此可以考虑在列表滑动时停止进行异步任务,直到列表停下来. //判断列表的 ...
- Luogu P1546 最短网络 Agri-Net
其实这道题根本没必要写,但为了测试vector+堆优化的Prim试一发. 再次觉得Prim和Dijkstra很像,堆优化版本也差不多. 和Dijkstra一样,Prim也是在之前的dis点中选取一个最 ...
- Spring boot多模块(moudle)中的一个注入错误(Unable to start embedded container; nested exception is org)
org.springframework.context.ApplicationContextException: Unable to start embedded container; nested ...
- DWR实现服务器向客户端推送消息
原文链接 http://www.blogjava.net/stevenjohn/archive/2012/07/07/382447.html这片文章还是给了我很大帮助,再次表示感谢,下面我将这两天的研 ...