之前学习了一些通用的画图方法和技巧,这次就学一下其它各种不同类型的图。好了先从散点图开始,上代码:

from matplotlib import pyplot as plt
import numpy as np n = 1024 #生成1024个点
x = np.random.normal(0, 1, n) #正态分布x坐标,均值0标准差1
y = np.random.normal(0, 1, n) #正态分布y坐标,均值0标准差1
color = np.arctan2(y, x) #这个用于渲染好看的颜色,自己琢磨意义,哈哈
plt.scatter(x, #x坐标
y, #y坐标
s=50, #点的大小
c=color, #颜色
alpha=0.5, #透明度
cmap='magma' #颜色板,看文档或者源码有很多类型,自己可以试试,如summer、winter、pink
)
plt.show()

散点图还是比较简单,关于一些常用设置,如坐标、图例、文字等可以看我之前的学习文章,还有就是很多参数这些看看api或者源码都能搞懂的。

接下来是简单用一下条形图:

from matplotlib import pyplot as plt
import numpy as np n = 12
x = np.arange(12) #12个条形
y1 = np.random.uniform(1, 10, n) #分布1-10的高度
y2 = -np.random.uniform(1, 10, n) #分布(-1)-(-10)的高度
plt.bar(x, y1)
plt.bar(x, y2) #接下来在条形上下方加上数值
for x0,y0 in zip(x, y1):
plt.text(x0,
y0,
'%.2f' % y0, #保留两位小数
ha='center', #水平对齐方式
va='bottom' #垂直对齐方式
) for x0, y0 in zip(x, y2):
plt.text(x0,
y0,
'%.2f' % y0, # 保留两位小数
ha='center', # 水平对齐方式
va='top' # 垂直对齐方式
)
plt.show()

好了,一个双层的条形图就完成了。其它还有什么饼图、直方图、等高线图等待很多,就不一一写出来了,接下来再弄一弄在一个figure显示多个图吧

其实很简单了,这里要用到subplot(n,m,d)将图分成n行m列,添加地d个格子的图像,接下来偷懒了,就用上面两个例子放一起就好了

from matplotlib import pyplot as plt
import numpy as np plt.figure(num=1, figsize=(12, 6))#设置figure属性,因为要放两张图,这里把宽度弄大点
plt.subplot(1, 2, 1)#1行2列第一个格子ax画图
n = 12
x = np.arange(12) #12个条形
y1 = np.random.uniform(1, 10, n) #分布1-10的高度
y2 = -np.random.uniform(1, 10, n) #分布(-1)-(-10)的高度
plt.bar(x, y1)
plt.bar(x, y2) #接下来在条形上下方加上数值
for x0,y0 in zip(x, y1):
plt.text(x0,
y0,
'%.2f' % y0, #保留两位小数
ha='center', #水平对齐方式
va='bottom' #垂直对齐方式
) for x0, y0 in zip(x, y2):
plt.text(x0,
y0,
'%.2f' % y0, # 保留两位小数
ha='center', # 水平对齐方式
va='top' # 垂直对齐方式
)
#到这里都是第一个ax格子的图像 plt.subplot(1, 2, 2)#开始在的二个ax画图
n = 1024 #生成1024个点
x = np.random.normal(0, 1, n) #正态分布x坐标,在0-1范围
y = np.random.normal(0, 1, n) #正态分布y坐标,在0-1范围
color = np.arctan2(y, x) #这个用于渲染好看的颜色,自己琢磨意义,哈哈
plt.scatter(x, #x坐标
y, #y坐标
s=50, #点的大小
c=color, #颜色
alpha=0.5, #透明度
cmap='magma' #颜色板,看文档或者源码有很多类型,自己可以试试,如summer、winter、pink
)
plt.show()

plt.figure()里面还有很多属性,比如背景颜色板,x和y轴是否共享坐标等等,自己看api和源码吧。哈哈,今天就到这儿。

机器学习-数据可视化神器matplotlib学习之路(三)的更多相关文章

  1. 机器学习-数据可视化神器matplotlib学习之路(五)

    这次准备做一下pandas在画图中的应用,要做数据分析的话这个更为实用,本次要用到的数据是pthon机器学习库sklearn中一组叫iris花的数据,里面组要有4个特征,分别是萼片长度.萼片宽度.花瓣 ...

  2. 机器学习-数据可视化神器matplotlib学习之路(二)

    之前学习了matplotlib的一些基本画图方法(查看上一节),这次主要是学习在图中加一些文字和其其它有趣的东西. 先来个最简单的图 from matplotlib import pyplot as ...

  3. 机器学习-数据可视化神器matplotlib学习之路(一)

    直接上代码吧,说明写在备注就好了,这次主要学习一下基本的画图方法和常用的图例图标等 from matplotlib import pyplot as plt import numpy as np #这 ...

  4. 机器学习-数据可视化神器matplotlib学习之路(四)

    今天画一下3D图像,首先的另外引用一个包 from mpl_toolkits.mplot3d import Axes3D,接下来画一个球体,首先来看看球体的参数方程吧 (0≤θ≤2π,0≤φ≤π) 然 ...

  5. Python数据可视化——使用Matplotlib创建散点图

    Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...

  6. 学习之路三十九:新手学习 - Windows API

    来到了新公司,一开始就要做个程序去获取另外一个程序里的数据,哇,挑战性很大. 经过两周的学习,终于搞定,主要还是对Windows API有了更多的了解. 文中所有的消息常量,API,结构体都整理出来了 ...

  7. 学机器学习,不会数据分析怎么行——数据可视化分析(matplotlib)

    前言 前面两篇文章介绍了 python 中两大模块 pandas 和 numpy 的一些基本使用方法,然而,仅仅会处理数据还是不够的,我们需要学会怎么分析,毫无疑问,利用图表对数据进行分析是最容易的, ...

  8. python 数据可视化(matplotlib)

    matpotlib 官网 :https://matplotlib.org/index.html matplotlib 可视化示例:https://matplotlib.org/gallery/inde ...

  9. 绘图和数据可视化工具包——matplotlib

    一.Matplotlib介绍 Matplotlib是一个强大的Python**绘图**和**数据可视化**的工具包. # 安装方法 pip install matplotlib # 引用方法 impo ...

随机推荐

  1. Atom编辑器折腾记

    http://blog.csdn.net/bomess/article/category/3202419/2 Atom编辑器折腾记_(1)介绍下载安装 Atom编辑器折腾记_(2)基础了解使用 Ato ...

  2. quic协议实时视频直播

    扫盲 https://www.jianshu.com/p/b7546ff9b683 demo https://github.com/felix-001/QuicRtmp https://github. ...

  3. SVN出现xcrun: error: invalid active developer path(Mac)

    Mac升级了系统,配置PHPStorm的SVN,出现如下错误: 具体提示的内容是:xcrun: error: invalid active developer path (/Library/Devel ...

  4. [py]约瑟夫问题-循环队列

    约瑟夫问题(历史战争问题) 直观理解 老外视频讲解 模拟器演示 约瑟夫问题 数学姥公众号 讲的最清楚 背景及,推倒过程讲解得很清晰,旨在提高人们对数据的兴趣 简单说下: 几个人围成一圈(循环队列), ...

  5. photoshop打造超酷炫火焰人像效果

    效果图看上去非常的酷.制作方法跟火焰字过程差不多.唯一不同的是前期的处理,需要用滤镜把人物轮廓路径找出来,去色后再用制作火焰的过程制作.最后把最好的火焰叠加到人物上面,适当用蒙版控制区域即可.原图 最 ...

  6. phper

    0 坚持写博客,有独立的博客1 有自己的github项目,目前致力于瓦力:meolu/walle-web · GitHub,瓦尔登:meolu/walden · GitHub变得更实用,欢迎标星:)2 ...

  7. mysql中char和varchar详解

    一.首先创建表. CREATE TABLE `t1` ( `id` int(11) DEFAULT NULL, `a` char(255) DEFAULT NULL) ENGINE=InnoDB DE ...

  8. camera原理

    1)Color Filter Array---CFA 图像传感器都采用一定的模式来采集图像数据,常用的有 BGR 模式和 CFA 模式.BGR 模式是一种可直接进行显示和压缩等处理的图像数据模式,它 ...

  9. Linux基础命令---sudo

    sudo sudo允许用户以超级用户或安全策略指定的另一个用户的身份执行命令.Sudo支持安全策略插件和输入/输出日志的插件.第三方可以开发和分发自己的策略和I/O日志插件,以便与sudo前端无缝地工 ...

  10. schema与catalog的理解

    sql环境中Catalog和Schema都属于抽象概念,主要用来解决命名冲突问题.一个数据库系统包含多个Catalog,每个Catalog包含多个Schema,每个Schema包含多个数据库对象(表. ...