4031: [HEOI2015]小Z的房间

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1089  Solved: 533

Description

你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。

你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希望统计一共有多少种可行的方案。

Input

第一行两个数分别表示n和m。

接下来n行,每行m个字符,每个字符都会是’.’或者’*’,其中’.’代表房间,’*’代表柱子。

Output

一行一个整数,表示合法的方案数 Mod 10^9

Sample Input

3 3
...
...
.*.

Sample Output

15

HINT

对于前100%的数据,n,m<=9

Source

【分析】

  也是裸的矩阵树定理。

  这道题的模数呢就要我们用到那个O(n^3logn)的不用求逆元的方法啦。

  

具体看代码:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Mod 1000000000
#define LL long long int a[][],num[][];
char s[][];
int bx[]={,,,-,},
by[]={,,,,-}; int gauss(int n)
{
int ans=;
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
{
while(a[j][i])
{
int nw=a[i][i]/a[j][i];
for(int k=i;k<=n;k++)
{
a[i][k]-=1LL*nw*a[j][k]%Mod;
a[i][k]%=Mod;
swap(a[i][k],a[j][k]);
}
ans=Mod-ans;
}
}
if(!a[i][i]) return ;
ans=1LL*ans*a[i][i]%Mod;
}
ans=(ans%Mod+Mod)%Mod;
return ans;
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%s",s[i]+);
int cnt=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) if(s[i][j]=='.') num[i][j]=++cnt;
memset(a,,sizeof(a));
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) if(s[i][j]=='.')
{
for(int k=;k<=;k++)
{
int nx=i+bx[k],ny=j+by[k];
if(nx<||nx>n||ny<||ny>m||s[nx][ny]=='*') continue;
a[num[i][j]][num[nx][ny]]--;
a[num[i][j]][num[i][j]]++;
}
}
printf("%d\n",gauss(cnt-));
return ;
}

2017-04-16 21:41:20

【BZOJ 4031】 4031: [HEOI2015]小Z的房间 (Matrix-Tree Theorem)的更多相关文章

  1. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  2. BZOJ 4031: [HEOI2015]小Z的房间(Matrix Tree)

    传送门 解题思路 矩阵树定理模板题.矩阵树定理是求图中最小生成树个数,做法是首先求出基尔霍夫矩阵,就是度数矩阵\(-\)邻接矩阵.然后再求出这个矩阵的行列式,行列式的求法就是任意去掉一行一列,然后高斯 ...

  3. 【BZOJ 4031】: [HEOI2015]小Z的房间

    题目大意: 给一个n×m的网格,“.”表示可联通,求该网格可构成的生成树个数在1E9的剩余系中的结果.(n,m<=9) 题解: 忘了删注释WA了两遍…… 直接建图+MartrixTree定理即可 ...

  4. bzoj 4031: [HEOI2015]小Z的房间 轮廓线dp

    4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 98  Solved: 29[Submit][Status] ...

  5. BZOJ 4031: [HEOI2015]小Z的房间 高斯消元 MartixTree定理 辗转相除法

    4031: [HEOI2015]小Z的房间 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个 ...

  6. [HEOI2015]小Z的房间 && [CQOI2018]社交网络

    今天看了一下矩阵树定理,然后学了一下\(O(n ^ 3)\)的方法求行列式. 哦对了,所有的证明我都没看-- 这位大佬讲的好呀: [学习笔记]高斯消元.行列式.Matrix-Tree 矩阵树定理 关于 ...

  7. 【bzoj4031】[HEOI2015]小Z的房间 解题报告

    [bzoj4031][HEOI2015]小Z的房间 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含\(n*m\)个格子的格状矩形,每个格子是一个房 ...

  8. 【bzoj4031】[HEOI2015]小Z的房间 Matrix-Tree定理+高斯消元

    [bzoj4031][HEOI2015]小Z的房间 2015年4月30日3,0302 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的 ...

  9. 【bzoj4031】[HEOI2015]小Z的房间 && 【bzoj4894】天赋 (矩阵树定理)

    来两道矩阵树模板: T1:[bzoj4031][HEOI2015]小Z的房间 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形 ...

随机推荐

  1. DHTML中window的使用

    window对象是对浏览器窗口进行操作的对象.以下列出一些常用的对象(三级为对象的方法.属性) |-navigator:是对浏览器信息进行操作的对象 |-history:包含用户浏览过的url信息 | ...

  2. marquee滚动效果

    转载两篇文章: http://blog.sina.com.cn/s/blog_49ce67fc0100atb4.html https://baike.1688.com/doc/view-d359560 ...

  3. 【洛谷 P2120】 [ZJOI2007]仓库建设(斜率优化)

    题目链接 斜率优化+1,好吧不水分了. 玩具装箱那题以后再做,当作复习吧. \(f[i]=f[j]-(sum[i]-sum[j])*dis[i]+p[i]\) \(f[j]=-dis[i]*sum[j ...

  4. 【leetcode 简单】第三十七题 相交链表

    编写一个程序,找到两个单链表相交的起始节点. 例如,下面的两个链表: A: a1 → a2 ↘ c1 → c2 → c3 ↗ B: b1 → b2 → b3 在节点 c1 开始相交. 注意: 如果两个 ...

  5. Vue笔记之props验证

    使用props 在Vue中父组件向子组件中传送数据是通过props实现的,一个简单的使用props的例子: <!DOCTYPE html> <html> <head> ...

  6. java在CMD窗口执行程序的时候输入密码(隐藏一些敏感信息)

    有时候我们需要从CMD窗口执行一些命令,有时候会输入一些敏感的信息,比如密码之类的东西,所以我们可以从控制台读取但是不希望别人看见我们的密码: import java.io.Console; /** ...

  7. supervisor之启动rabbitmq报错原因

    前言 今天重启了服务器,发现supervisor管理的rabbitmq的进程居然启动失败了,查看日志发现老是报错,记录一下解决的办法. 报错:erlexec:HOME must be set 找了网上 ...

  8. nvidia tx1使用记录--基本环境搭建

    前言 之前有专门写过一篇nvidia tk1使用记录--基本环境搭建,本以为自己有过tk1的经验后,在tx1上搭建和它一样的环境会轻车熟路,结果却是在nvidia tx1上花的时间居然比tk1还多.我 ...

  9. 离线部署ELK+kafka日志管理系统【转】

    转自 离线部署ELK+kafka日志管理系统 - xiaoxiaozhou - 51CTO技术博客http://xiaoxiaozhou.blog.51cto.com/4681537/1854684 ...

  10. 全面了解 Nginx 主要应用场景

    前言 本文只针对Nginx在不加载第三方模块的情况能处理哪些事情,由于第三方模块太多所以也介绍不完,当然本文本身也可能介绍的不完整,毕竟只是我个人使用过和了解到过得.所以还请见谅,同时欢迎留言交流 N ...