卷积网络

       卷积网络用三种结构来确保移位、尺度和旋转不变:局部感知野、权值共享和时间或空间降采样。典型的leNet-5如下图所示:

C1中每个特征图的每个单元和输入的25个点相连,这个5*5的区域被称为感知野。特征图的每个单元共享25个权值和一个偏置。其他特征图使用不同的权值(卷积枋),因

此可以得到不同类型的局部特征。卷积层的一个重要思想是,如果图像产生了位移,特征图输出将会产生相同数量的位移。这也是卷积网络位移和形变不变的原理。

特征图检测完毕后,它们的确切位置就不那么重要了,重要的是特征之间的相对位置。特征位置太准确不仅无利于模式识别,还会有害处,因为对不同的字符来说它们的位置是

不同的(所以特征之间的相对位置才是最重要的)。降低位置准确性可以通过下采样来降低分辨率来实现,同是也降低了输出对位移和形变的敏感性。每个单元计算四个输入的平均值(就是采样层),

将下采样的值乘一个训练系数加一个偏置(下采样层连接到sigmod的系数同要需要训练),然后将结果传给激活函数。训练系数和偏置控制了sigmod函数的非线性。如果这个系数很小的话,则每个单元类似于线性模型,下采样层所起的功能仅仅就是模糊输入;如果系数很大,则下采样操作可视为noisy OR或者 noisy AND(取决于偏置的大小)(存疑?)。

leNet-5

leNet-5有七层(不含输入),其中C1有156((5*5+1)*6)个可训练参数,122304(28*28*156)个连接。C2层的一个单元为C1中的2*2所得,输入到激活函数时它们共用一个

系数加一个偏置,所需的训练参数为(1+1)*6=12个,连接参数为(4+1)*6*14*14=5880个(我的理解是只在leNet-5中2*2的感知野值相同)。

C3层有16个特征图,由表格可以看出,每个特征图对S2中的特征图并非是全连接的。共有(25*3+1)*6+(25*4)*9+(25*6+1)=1516个训练参数,连接个数为

1516*10*10=151600个。S4同样为下采样层,有16*(1+1)=32个训练参数,有(2*2+1)*25*16=2000个连接。

     C5有120个特征图,同样用5*5的卷积核,与S4层全连接,所以C5的特征是1*1的。之所以C5为卷积层而不是全连接层,是因为当le-Net5的输入增大时,特征图的维度也会大于

1*1。

F6全连接层,有84个单元,与C5全连接,共有(120+1)*84=10164个训练参数。同经经典的神经网络一样,F6乘权重加偏置然后送入到激活函数中。

下面是输出层(好吧,看的不是很明白),参考:http://blog.csdn.net/zouxy09/article/details/8781543

Gradient-Based Learning Applied to Document Recognition 部分阅读的更多相关文章

  1. 深度学习基础(一)LeNet_Gradient-Based Learning Applied to Document Recognition

    作者:Yann LeCun,Leon Botton, Yoshua Bengio,and Patrick Haffner 这篇论文内容较多,这里只对部分内容进行记录: 以下是对论文原文的翻译: 在传统 ...

  2. 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition

    Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...

  3. Learning Query and Document Similarities from Click-through Bipartite Graph with Metadata

    读了一篇paper,MSRA的Wei Wu的一篇<Learning Query and Document Similarities from Click-through Bipartite Gr ...

  4. 强化学习之 免模型学习(model-free based learning)

    强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现 ...

  5. Collaborative Spatioitemporal Feature Learning for Video Action Recognition

    Collaborative Spatioitemporal Feature Learning for Video Action Recognition 摘要 时空特征提取在视频动作识别中是一个非常重要 ...

  6. Pros and Cons of Game Based Learning

    https://www.gamedesigning.org/learn/game-based-learning/ I remember days gone by at elementary schoo ...

  7. 论文阅读 | Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition

    源地址 arXiv:1712.07465: Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition ...

  8. 论文阅读:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis

    论文标题:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis 论文链接:http://arxi ...

  9. BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

    BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition 目录 BBN: Bi ...

随机推荐

  1. Coding and Paper Letter(四十五)

    资源整理. 1 Coding: 1.Python库gempy,一种基于Python的开源三维结构地质建模软件,它允许从界面和方向数据隐式(即自动)创建复杂的地质模型. 它还支持随机建模以解决参数和模型 ...

  2. BZOJ3771 Triple 【NTT + 容斥】

    题目链接 BZOJ3771 题解 做水题放松一下 先构造\(A_i\)为\(x\)指数的生成函数\(A(x)\) 再构造\(2A_i\)为指数的生成函数\(B(x)\) 再构造\(3A_i\)为指数的 ...

  3. CF825F String Compression 解题报告

    CF825F String Compression 题意 给定一个串s,其中重复出现的子串可以压缩成 "数字+重复的子串" 的形式,数字算长度. 只重复一次的串也要压. 求压缩后的 ...

  4. 我是大SB

    哈哈哈 我就是个大SB!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

  5. Latent Semantic Analysis(LSA/ LSI)原理简介

    LSA的工作原理: How Latent Semantic Analysis Works LSA被广泛用于文献检索,文本分类,垃圾邮件过滤,语言识别,模式检索以及文章评估自动化等场景. LSA其中一个 ...

  6. 在Centos系统下使用命令安装gnome图形界面程序

    第一步:先检查yum 是否安装了,以及网络是否有网络.如果这两者都没有,先解决网络,在解决yum的安装. 第二步:在命令行下 输入下面的命令来安装Gnome包. # yum groupinstall ...

  7. [洛谷P3228] [HNOI2013]数列

    洛谷题目链接:[HNOI2013]数列 题目描述 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到: ...

  8. Spring Cacheable 注解不缓存null值

    用Cacheable注解时,发现空值,也会被缓存下来.如果我们期望空值不被缓存,可以做如下设置: @Cacheable(key = "#id", unless="#res ...

  9. (转)使用Excel批量给数据添加单引号和逗号

    在使用PLSQL连接oracle数据库处理数据的过程中,常用的操作是通过ID查询出数据,ID需要附上单引号,如果查询的ID为一条或者几条,我们手动添加即可,但是如果是几百条.几千条的话,就需要使用一些 ...

  10. 【BZOJ】1707: [Usaco2007 Nov]tanning分配防晒霜

    [算法]贪心扫描线(+堆) [题意]给定n头牛有区间[a,b],m个防晒霜值为ai,每个可以使用bi次,每次可以使包含它的区间涂到防晒霜,问最多被涂牛数. [题解] 参考:[bzoj1707]: [U ...