卷积网络

       卷积网络用三种结构来确保移位、尺度和旋转不变:局部感知野、权值共享和时间或空间降采样。典型的leNet-5如下图所示:

C1中每个特征图的每个单元和输入的25个点相连,这个5*5的区域被称为感知野。特征图的每个单元共享25个权值和一个偏置。其他特征图使用不同的权值(卷积枋),因

此可以得到不同类型的局部特征。卷积层的一个重要思想是,如果图像产生了位移,特征图输出将会产生相同数量的位移。这也是卷积网络位移和形变不变的原理。

特征图检测完毕后,它们的确切位置就不那么重要了,重要的是特征之间的相对位置。特征位置太准确不仅无利于模式识别,还会有害处,因为对不同的字符来说它们的位置是

不同的(所以特征之间的相对位置才是最重要的)。降低位置准确性可以通过下采样来降低分辨率来实现,同是也降低了输出对位移和形变的敏感性。每个单元计算四个输入的平均值(就是采样层),

将下采样的值乘一个训练系数加一个偏置(下采样层连接到sigmod的系数同要需要训练),然后将结果传给激活函数。训练系数和偏置控制了sigmod函数的非线性。如果这个系数很小的话,则每个单元类似于线性模型,下采样层所起的功能仅仅就是模糊输入;如果系数很大,则下采样操作可视为noisy OR或者 noisy AND(取决于偏置的大小)(存疑?)。

leNet-5

leNet-5有七层(不含输入),其中C1有156((5*5+1)*6)个可训练参数,122304(28*28*156)个连接。C2层的一个单元为C1中的2*2所得,输入到激活函数时它们共用一个

系数加一个偏置,所需的训练参数为(1+1)*6=12个,连接参数为(4+1)*6*14*14=5880个(我的理解是只在leNet-5中2*2的感知野值相同)。

C3层有16个特征图,由表格可以看出,每个特征图对S2中的特征图并非是全连接的。共有(25*3+1)*6+(25*4)*9+(25*6+1)=1516个训练参数,连接个数为

1516*10*10=151600个。S4同样为下采样层,有16*(1+1)=32个训练参数,有(2*2+1)*25*16=2000个连接。

     C5有120个特征图,同样用5*5的卷积核,与S4层全连接,所以C5的特征是1*1的。之所以C5为卷积层而不是全连接层,是因为当le-Net5的输入增大时,特征图的维度也会大于

1*1。

F6全连接层,有84个单元,与C5全连接,共有(120+1)*84=10164个训练参数。同经经典的神经网络一样,F6乘权重加偏置然后送入到激活函数中。

下面是输出层(好吧,看的不是很明白),参考:http://blog.csdn.net/zouxy09/article/details/8781543

Gradient-Based Learning Applied to Document Recognition 部分阅读的更多相关文章

  1. 深度学习基础(一)LeNet_Gradient-Based Learning Applied to Document Recognition

    作者:Yann LeCun,Leon Botton, Yoshua Bengio,and Patrick Haffner 这篇论文内容较多,这里只对部分内容进行记录: 以下是对论文原文的翻译: 在传统 ...

  2. 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition

    Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...

  3. Learning Query and Document Similarities from Click-through Bipartite Graph with Metadata

    读了一篇paper,MSRA的Wei Wu的一篇<Learning Query and Document Similarities from Click-through Bipartite Gr ...

  4. 强化学习之 免模型学习(model-free based learning)

    强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现 ...

  5. Collaborative Spatioitemporal Feature Learning for Video Action Recognition

    Collaborative Spatioitemporal Feature Learning for Video Action Recognition 摘要 时空特征提取在视频动作识别中是一个非常重要 ...

  6. Pros and Cons of Game Based Learning

    https://www.gamedesigning.org/learn/game-based-learning/ I remember days gone by at elementary schoo ...

  7. 论文阅读 | Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition

    源地址 arXiv:1712.07465: Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition ...

  8. 论文阅读:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis

    论文标题:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis 论文链接:http://arxi ...

  9. BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

    BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition 目录 BBN: Bi ...

随机推荐

  1. HDU1863畅通工程---并查集+最小生成树

    #include<cstdio> #include<algorithm> #define MAX 105 struct edge { int from,to; long lon ...

  2. HDU4625 JZPTREE——第二类斯特林数

    复杂度大概O(nk) 一些尝试:1.对每个点推出1,2,3,,,到k次方的值.但是临项递推二项式展开也要考虑到具体每个点的dist 2.相邻k次方递推呢?递推还是不能避免k次方的展开 k次方比较讨厌, ...

  3. varchar字段

    varchar  最长26000多,实际使用最好不要超过255,会占内存 可以考虑text

  4. [Java多线程]-并发,并行,synchonrized同步的用法

    一.多线程的并发与并行: 并发:多个线程同时都处在运行中的状态.线程之间相互干扰,存在竞争,(CPU,缓冲区),每个线程轮流使用CPU,当一个线程占有CPU时,其他线程处于挂起状态,各线程断续推进. ...

  5. centos中设置swap交换空间的大小设置和swappiness的比例设置

    首先使用free -m命令查看内存使用情况和swap的大小 关闭swap: 设置swap的大小: bs指的是Block Size,就是每一块的大小.这里的例子是1M,意思就是count的数字,是以1M ...

  6. HDU 2298 三分

    斜抛从(0,0)到(x,y),问其角度. 首先观察下就知道抛物线上横坐标为x的点与给定的点的距离与角度关系并不是线性的,当角度大于一定值时可能会时距离单调递减,所以先三分求个角度范围,保证其点一定在抛 ...

  7. Linux中系统日志

    系统日志的默认路径是:/var/log 下面是几个重要的日志文件的路径及其包含的信息: /var/log/syslog:它和/etc/log/messages日志文件不同,它只记录警告信息,常常是系统 ...

  8. MySQL性能优化之道

    1.in和not in子查询优化 not in 是不能命中索引的,所以以下子查询性能很低. 如果是确定且有限的集合时,可以使用.如 IN (0,1,2). 用 exists或 notexists代替 ...

  9. JavaScript定义类的几种方式

    提起面向对象我们就能想到类,对象,封装,继承,多态.在<javaScript高级程序设计>(人民邮电出版社,曹力.张欣译.英文名字是:Professional JavaScript for ...

  10. eclipse启动项目

    今天做的任务不多,没有自己写代码,上午看了些文章,下午我司后台给配了配项目环境,全装C盘了..以后有我好受的.. 看着后台操作,修改了N多配置,tomcat.redis.zkServer..Nginx ...