bzoj 2186
非常有趣的题
题意:求1~N!中有多少个与M!互质的数,T组询问,答案对R取模
题解:
首先,因为N>M,所以N!>M!,所以答案一定有一部分是φ(M!)
接下来做一些分析:
引理:
若x与p互质,则x+kp与p互质(k∈Z)
证明:
反证法:假设x+kp与p不互质,则设gcd(x+kp,p)=d(d!=1),那么设p=k1d,x+kp=k2d,于是:
x=k2d-kk1d
所以x=(k2-kk1)d
那么gcd(x,p)=d
这与x与p互质相矛盾,假设不成立,原命题得证
那么,我们可以将N!分组,每组大小为M!(即将N!中每个数表示成kM!+c),那么每部分与M!互质的数的个数都是φ(M!),合起来就是N!/M!*φ(M!)
预处理即可,需要使用unsigned来卡常
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll unsigned int
#define ull unsigned long long
#define maxn 10000000
using namespace std;
ll n,m;
ll T,R;
ll inv[maxn+];
ll mul[maxn+];
ll pri[maxn+];
ll phi[maxn+];
bool used[maxn+];
int tot=;
void init()
{
phi[]=inv[]=inv[]=mul[]=mul[]=;
for(int i=;i<=maxn;i++)
{
inv[i]=(ull)(R-R/i)*inv[R%i]%R;
if(!used[i])
{
pri[++tot]=i;
}
for(int j=;j<=tot&&i*pri[j]<=maxn;j++)
{
used[i*pri[j]]=;
if(i%pri[j]==)
{
break;
}
}
}
for(int i=;i<=maxn;i++)
{
mul[i]=(ull)mul[i-]*i%R;
inv[i]=(ull)inv[i-]*inv[i]%R;
if(!used[i])
{
phi[i]=(ull)phi[i-]*(i-)%R;
}else
{
phi[i]=(ull)phi[i-]*i%R;
}
}
}
int main()
{
scanf("%u%u",&T,&R);
init();
while(T--)
{
scanf("%u%u",&n,&m);
printf("%u\n",(ull)mul[n]*inv[m]%R*(ull)phi[m]%R);
}
return ;
}
bzoj 2186的更多相关文章
- [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】
题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...
- [BZOJ 2186][SDOI 2008] 莎拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 4519 Solved: 1560[Submit][S ...
- [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- BZOJ 2186 沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 3397 Solved: 1164 [Submit] ...
- 洛谷 P2155 BZOJ 2186 codevs 2301 [SDOI2008]沙拉公主的困惑
题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的 ...
- BZOJ 2186 [Sdoi2008]沙拉公主的困惑 【逆元】
题意:求中互质的数的个数,其中. 分析:因为,所以,我们很容易知道如下结论 对于两个正整数和,如果是的倍数,那么中与互素的数的个数为 本结论是很好证明的,因为中与互素的个数为,又知道, ...
随机推荐
- day 4 - 2 数据类型练习
1. 在字符串中数字相连的为一组,输出数字共有几组 如: 123sdf456sdf789 数字为:3组 info = input(">>>") for i in ...
- Windows下python安装运行
1. 在python官网 https://www.python.org/downloads/windows/ 选择要下载的版本,我下载了最新版本 2. 双击运行 3. naxt 4. install ...
- Challenge Create a Launch Pad
在头文件中定义网格体组件和重叠组件 UPROPERTY(VisibleAnywhere,Category="Components") UStaticMeshComponent* M ...
- 工具方法 .js
1. 获取url问号后面,name的值 /** * *?id=123&a=b * @return object */export function urlParse(){ let url = ...
- GridView item设置点击背景
GridView item设置点击背景 android:listSelector="@android:color/transparent"
- Mysql多实例安装笔记
参考: 系统:KaliLinux (x86_64) 软件下载 1.下载地址: 2.选择5.6版本 安装 1.准备文件和目录 tar -zxvf mysql-5.6.40-linux-glibc2.12 ...
- 【ARTS】01_17_左耳听风-20190304~20190310
ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...
- FlowNet2.0 安装指南
 \(安装环境: \color{red}{Ubuntu16.04 + CUDA8.0 + cuDNN5.0}\) 安装 CUDA CUDA 安装准备 CUDA 官方安装文档 首先查看是否电脑具有支持 ...
- Xml 文件读取
.NET 读取Xml文件,用到XmlDocument类. 1.要获取文档的根: DocumentElement. 2.Attributes :获取 XmlAttributeCollection 包含此 ...
- hibernate框架学习之数据查询(QBC)helloworld
package cn.itcast.h3.query.hql; import java.util.List; import org.hibernate.Criteria; import org.hib ...