传送门

https://www.cnblogs.com/violet-acmer/p/9852294.html

题意:

  给你一个只由 '(' , ')' , '[' , ']' 组成的字符串s[ ],求最大匹配?

题解:

  定义dp[ i ][ j ] : 从第i个字符到第j个字符的最大匹配。

  步骤:

    (1) : 如果s[ i ] 与 s[ j ]匹配,那么dp[ i ][ j ] =  2+dp[ i+1 ][ j-1 ];反之,dp[ i ][ j ] = 0;

    (2) : 接下来,从 i 到 j 将区间划分成两部分[ i , k ]和[ k+1 , j ],( i ≤ k ≤ j-1 ),状态转移方程为

      dp[ i ][ j ]=max( dp[ i ][ j ] , dp[ i ][ k ]+dp[ k+1 ][ j ] );

AC代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
const int maxn=+; char s[maxn];
int dp[maxn][maxn]; // (int)'(' = 40,(int)')' = 41;
// (int)'[' = 91,(int)']' = 93;
bool isMatch(int i,int j){//判断s[i]与s[j]是否匹配
return (s[j]-s[i] == || s[j]-s[i] == ) ? true:false;
}
int Solve()
{
int sLen=strlen(s);
int res=;
for(int i=;i < sLen;++i)
{
dp[i][i]=;
dp[i][i+]=(isMatch(i,i+) ? :);
res=dp[i][i+];
}
for(int len=;len <= sLen;++len)//区间长度
{
for(int i=;i+len- < sLen;++i)
{
int j=i+len-;
dp[i][j]=(isMatch(i,j) ? +dp[i+][j-]:);
for(int k=i;k < j;++k)
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+][j]);
res=max(res,dp[i][j]);
}
}
return res;
}
int main()
{
// freopen("C:\\Users\\lenovo\\Desktop\\in.txt\\poj2955.txt","r",stdin);
while(scanf("%s",s) && s[] != 'e')
printf("%d\n",Solve()); return ;
}

  分析:

    能使用区间DP,必须得满足两个条件:

    (1) : 问题具有最优子结构

      如果区间对于状态转移方程:dp[ i ][ j ]=max( dp[ i ][ j ] , dp[ i ][ k ]+dp[ k+1 ][ j ] );

      如果子结构dp[ i , k ],dp[ k+1 , j ]所求的解为最优解,那么dp[ i , j ]必定也是最优解,反之亦成立。

    (2) : 无后效性

      区间[ i , j ]的子区间 [ i , k ] 和 [ k+1 , j ] 是通过何种方式取得最优解的并不影响 [ i , j ] 是以何种方式取得最优解

poj 2955"Brackets"(区间DP)的更多相关文章

  1. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  2. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  3. poj 2955 Brackets (区间dp 括号匹配)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  4. POJ 2955 Brackets 区间DP 入门

    dp[i][j]代表i->j区间内最多的合法括号数 if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']') dp[i][j] ...

  5. POJ 2955 Brackets(区间DP)

    题目链接 #include <iostream> #include <cstdio> #include <cstring> #include <vector& ...

  6. POJ 2955 Brackets 区间DP 最大括号匹配

    http://blog.csdn.net/libin56842/article/details/9673239 http://www.cnblogs.com/ACMan/archive/2012/08 ...

  7. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  8. A - Brackets POJ - 2955 (区间DP模板题)

    题目链接:https://cn.vjudge.net/contest/276243#problem/A 题目大意:给你一个字符串,让你求出字符串的最长匹配子串. 具体思路:三个for循环暴力,对于一个 ...

  9. POJ 2955 Brackets 区间合并

    输出一个串里面能匹配的括号数 状态转移方程: if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']')             dp ...

随机推荐

  1. npm安裝、卸載、刪除、撤銷發佈包、更新版本信息

    利用npm安裝包: 全局安裝:npm install -g 模塊安裝 局部安裝(可以使用repuire(‘模塊名’)引用):npm install 模塊名稱 如果權限不夠,就是用管理員方式安裝. 本地 ...

  2. maven(win10)配置完环境变量后无法识别mvn -v命令

    第一步:http://maven.apache.org/download.cgi官网下载 第二步:把压缩包解压缩到不含中文和空格的目录下 第三步:新建MAVEN_HOME环境变量,值为maven解压缩 ...

  3. MySQL列类型选择

    比如年龄这个字段可以使用  1990-03-15  也可以用  19900315表示在列类型上可以选择 char 和 int:如果一个字段可以选择多种类型,尽量选择一个更快的类型:字段类型优先级   ...

  4. Thread的其他属性方法

    from threading import Thread,currentThread,active_count import time def task(): print('%s is running ...

  5. JarvisOJ Basic 熟悉的声音

    两种元素,还有声音,想到了莫尔斯电码,解码得到 jbluwewnz 提交,发现不对,觉得应该是有实际意义的东西,实在想不到还能怎么解,就去看了题解. 发现这个还可以再套一个凯撒密码,就拿python写 ...

  6. node.js 运行机制与简单使用

    一.hello world 1.引入 required 模块 2.创建服务器 3.接收请求与响应请求 var http = require('http'); // 载入http模块 http.crea ...

  7. 进入jsp页面的6种方法

    1.sendRedirect重定向,效率低,发送一个状态码,然后让浏览器去请求这个地址,显示最新的url值 2.forword转发,效率高,服务器访问目标url,然后把url的响应内容读取过来,在发送 ...

  8. JMeter——JMeter如何进行汉化

    1.找到bin目录下的jmeter.properties文件 2.打开找到第37行,打开注释并将language=en改为language=zh_CN 3.重启

  9. Django RBAC用户权限设计方案

    RBAC基于用户权限系统设置方案 RBAC(Role-Based Access Control,基于角色的访问控制),就是用户通过角色与权限进行关联.简单地说,一个用户拥有若干角色,每一个角色拥有若干 ...

  10. centos6.8下安装matlab2009(图片转帖)

    前言 如何优雅的在centos6.8上安装matlab2009. 流程 不过我个人安装过程完后启动matlab的时候又出现了新问题: error while loading shared librar ...