Matplotlib学习---用seaborn画联合分布图(joint plot)
有时我们不仅需要查看单个变量的分布,同时也需要查看变量之间的联系,这时就需要用到联合分布图。
这里利用Jake Vanderplas所著的《Python数据科学手册》一书中的数据,学习画图。
数据地址:http://raw.githubusercontent.com/jakevdp/marathon-data/master/marathon-data.csv
先来看一下这个数据文件(此处只摘取部分):
age gender split final
0 33 M 01:05:38 02:08:51
1 32 M 01:06:26 02:09:28
2 31 M 01:06:49 02:10:42
3 38 M 01:06:16 02:13:45
4 31 M 01:06:32 02:13:59
5 31 M 01:06:13 02:14:11
6 27 M 01:06:40 02:14:28
7 31 M 01:06:31 02:15:16
8 30 M 01:05:39 02:15:57
9 30 M 01:05:40 02:16:39
10 26 M 01:08:10 02:18:18
... ... ... ...
37220 52 M 03:20:00 08:46:04
37221 53 M 03:40:34 08:46:39
37222 60 M 03:39:16 08:46:48
37223 57 M 03:47:08 08:46:58
37224 61 M 03:32:20 08:47:25
37225 41 M 03:43:25 08:49:12
37226 24 M 03:34:01 08:49:36
37227 79 M 03:28:31 08:49:46
37228 24 W 03:35:21 08:50:47
37229 60 W 03:49:33 08:50:58
37230 50 W 03:43:48 08:52:14
这个数据展示的是各年龄和性别的人跑马拉松比赛所用的时间(半程split和全程final)。
让我们来画一个联合分布图,看一下半程和全程时间的分布情况。
联合分布图: sns.jointplot(x,y,data=...,kind=...)
这里需要对数据做的处理工作是把半程和全程的时间转换成秒,因为时间的格式是固定的,因此写了一个用于时间转换的helper function。
代码如下:
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
marathon=pd.read_csv(r"http://raw.githubusercontent.com/jakevdp/marathon-data/master/marathon-data.csv") marathon["split"]=marathon["split"].astype(str)
marathon["final"]=marathon["final"].astype(str) def convert_time_to_sec(time):
"""convert hh:mm:ss to seconds"""
hour=int(time[:2])
minute=int(time[3:5])
sec=int(time[6:])
total_sec=hour*3600+minute*60+sec
return total_sec marathon["split_sec"]=[convert_time_to_sec(i) for i in marathon["split"]]
marathon["final_sec"]=[convert_time_to_sec(i) for i in marathon["final"]] sns.jointplot("split_sec","final_sec",data=marathon) plt.show()
图像如下:

可以看出,如果数据点位于对角线上,说明半程所用的时间正好是全程的一半。但是,大部分数据点都位于对角线上方,这说明大部分人后半程用的时间要比前半程多,也就是越跑越慢。
此外,如果将kind参数设置为reg,图像还会显示拟合线。
Matplotlib学习---用seaborn画联合分布图(joint plot)的更多相关文章
- Matplotlib学习---用seaborn画直方图,核密度图(histogram, kdeplot)
由于直方图受组距(bin size)影响很大,设置不同的组距可能会产生完全不同的可视化结果.因此我们可以用密度平滑估计来更好地反映数据的真实特征.具体可参见这篇文章:https://blog.csdn ...
- Matplotlib学习---用seaborn画矩阵图(pair plot)
矩阵图非常有用,人们经常用它来查看多个变量之间的联系. 下面用著名的鸢尾花数据来画一个矩阵图.从sklearn导入鸢尾花数据,然后将其转换成pandas的DataFrame类型,最后用seaborn画 ...
- Matplotlib学习---用wordcloud画词云(Word Cloud)
画词云首先需要安装wordcloud(生成词云)和jieba(中文分词). 先来说说wordcloud的安装吧,真是一波三折.首先用pip install wordcloud出现错误,说需要安装Vis ...
- Matplotlib学习---用mplot3d画莫比乌斯环(Mobius strip)
mplot3d是matplotlib里用于绘制3D图形的一个模块.关于mplot3d 绘图模块的介绍请见:https://blog.csdn.net/dahunihao/article/details ...
- Matplotlib学习---用matplotlib画直方图/密度图(histogram, density plot)
直方图用于展示数据的分布情况,x轴是一个连续变量,y轴是该变量的频次. 下面利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://d ...
- Matplotlib学习---用matplotlib和sklearn画拟合线(line of best fit)
在机器学习中,经常要用scikit-learn里面的线性回归模型来对数据进行拟合,进而找到数据的规律,从而达到预测的目的.用图像展示数据及其拟合线可以非常直观地看出拟合线与数据的匹配程度,同时也可用于 ...
- Matplotlib学习---用matplotlib画箱线图(boxplot)
箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分 ...
- Matplotlib学习---matplotlib的一些基本用法
Matplotlib有两种接口,一种是matlab风格接口,一种是面向对象接口.在这里,统一使用面向对象接口.因为面向对象接口可以适应更复杂的场景,在多图之间进行切换将变得非常容易. 首先导入matp ...
- 很值得学习的java 画图板源码
很值得学习的java 画图板源码下载地址:http://download.csdn.net/source/2371150 package minidrawpad; import java.awt.*; ...
随机推荐
- js canvas图片压缩
function preview_picture(pic){ var r=new FileReader(); r.readAsDataURL(pic); r.onload=function(e){ d ...
- 数学基础IV 欧拉函数 Miller Rabin Pollard's rho 欧拉定理 行列式
找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(h ...
- numpy中random的使用
import numpy as np a=np.random.random()#用于生成一个0到1的随机浮点数: 0 <= n < 1.0print(a)0.772000903322952 ...
- abaqus安装破解
软件安装包 链接:http://pan.baidu.com/s/1pL4oxfX 密码:on1g 破解网页视频链接https://v.youku.com/v_show/id_XMTg4ODM5NjY5 ...
- Python_socket常见的方法、网络编程的安全注意事项、socketsever模块、浏览器中在一段时间记录用户的登录验证机制
1.socket常见的方法 socket_常见方法_服务器端 import socket from socket import SOL_SOCKET,SO_REUSEADDR sk = socket. ...
- 2019省赛训练组队赛3.31周四-17fj
https://vjudge.net/contest/289558#overview A - Frog Therearex frogs and y chicken in a garden. Kim f ...
- Linux watchdog
使用 watchdog 构建高可用性的 Linux 系统及应用https://www.ibm.com/developerworks/cn/linux/l-cn-watchdog/index.html ...
- C#复习笔记(3)--C#2:解决C#1的问题(泛型)
这一章会描述在C#2中所做的主要的变化 泛型 泛型的概念中包含类型参数和类型实参,类型参数相当于类型实参的蓝图. 泛型类型分为未绑定泛型类型和已构造泛型类型.已构造泛型类型又分为开放的泛型类型和封闭的 ...
- SpringMVC+Spring+Mybatis+AngularJS 多规格保存示例代码
insert时拿到最新增加的id值 绑定参数 js 实体类 Service实现类 Controller
- spring的xml配置里,最好不要配置xsd的版本名称
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...