【BZOJ4820】[SDOI2017]硬币游戏(高斯消元)
【BZOJ4820】[SDOI2017]硬币游戏(高斯消元)
题面
题解
第一眼的感觉就是构\(AC\)自动机之后直接高斯消元算概率,这样子似乎就是\(BZOJ1444\)了。然而点数太多了,三方的消元没法做。
考虑如何优化点数,首先我们的所有点可以分为两种,一种是终止节点,另外一种则不是。
既然现在要某一个串出现,因此我们唯一需要考虑的是到达终止节点的情况。设\(f_i\)表示到达第\(i\)个串的终止位置,并且没有到达过其他终止节点的概率,也就是第\(i\)个串的答案。设\(f_0\)表示没有到达任何一个串终止位置的概率。
那么显然的,要到达当前位置,我们一种可行的方法就是在没有匹配上任何一个串的串后面接上当前串,那么概率就是\(f_0*\frac{1}{2^m}\),然而这个东西显然会比\(f_i\)要大,因为这个终止串再接上当前串可能包含了其他的串\(j\),而\(f_0\)表示的串没有匹配上任何一个串,意味着\(j\)的后缀是\(i\)的前缀。那么考虑所有其他串与当前串前后缀的匹配长度\(k\),我们可以列出方程:
\]
而然这样子是\(n+1\)元,\(n\)个方程,再利用\(\sum f_i=1\)补足最后一个方程即可。
好神仙啊。
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define ll long long
#define ull unsigned long long
#define MAX 320
const ull base=233;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m;char ch[MAX];
ull h[MAX][MAX],pw[MAX];
ull geths(int x,int l,int r){return h[x][r]-h[x][l-1]*pw[r-l+1];}
double g[MAX][MAX],bin[MAX];
void Guass()
{
for(int i=0;i<=n;++i)
{
int p=i;
for(int j=i+1;j<=n;++j)if(fabs(g[j][i])>fabs(g[p][i]))p=j;
swap(g[p],g[i]);
double t=g[i][i];
for(int j=i;j<=n+1;++j)g[i][j]/=t;
for(int j=i+1;j<=n;++j)
{
double t=g[j][i];
for(int k=0;k<=n+1;++k)g[j][k]-=g[i][k]*t;
}
}
for(int i=n;i;--i)
{
g[i][n+1]/=g[i][i];
for(int j=i-1;j;--j)
g[j][n+1]-=g[i][n+1]*g[j][i];
}
}
int main()
{
n=read();m=read();pw[0]=bin[0]=1;
for(int i=1;i<=m;++i)pw[i]=pw[i-1]*base,bin[i]=bin[i-1]/2;
for(int i=1;i<=n;++i)
{
scanf("%s",ch+1);
for(int j=1;j<=m;++j)h[i][j]=h[i][j-1]*base+ch[j];
}
g[0][n+1]=1;
for(int i=1;i<=n;++i)
{
g[0][i]=1;g[i][0]=-bin[m];
for(int j=1;j<=n;++j)
for(int k=1;k<=m;++k)
if(geths(i,1,k)==geths(j,m-k+1,m))
g[i][j]+=bin[m-k];
}
Guass();
for(int i=1;i<=n;++i)printf("%.10lf\n",g[i][n+1]);
return 0;
}
【BZOJ4820】[SDOI2017]硬币游戏(高斯消元)的更多相关文章
- [BZOJ4820][SDOI2017]硬币游戏(高斯消元+KMP)
比较神的一道题,正解比较难以理解. 首先不难得出一个(nm)^3的算法,对所有串建AC自动机,将在每个点停止的概率作为未知数做高斯消元即可. 可以证明,AC自动机上所有不是模式串终止节点的点可以看成一 ...
- [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)
[BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...
- [Sdoi2017]硬币游戏 [高斯消元 KMP]
[Sdoi2017]硬币游戏 题意:硬币序列,H T等概率出现,\(n \le 300\)个人猜了一个长为$ m \le 300$的字符串,出现即获胜游戏结束.求每个人获胜概率 考场用了[1444: ...
- BZOJ4820 Sdoi2017 硬币游戏 【概率期望】【高斯消元】【KMP】*
BZOJ4820 Sdoi2017 硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实 ...
- BZOJ4820 SDOI2017硬币游戏(概率期望+高斯消元+kmp)
容易想到的做法是建出AC自动机,高斯消元.然而自动机上节点数量是nm的. 注意到我们要求的变量只有n个,考虑将其他不用求的节点合并为一个变量.这个变量即表示随机生成一个串,其不包含任何一个模板串的概率 ...
- [bzoj4820][Sdoi2017]硬币游戏
来自FallDream的博客,未经允许,请勿转载,谢谢. 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了 ...
- 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基
题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...
- BZOJ 3105: [cqoi2013]新Nim游戏 [高斯消元XOR 线性基]
以后我也要用传送门! 题意:一些数,选择一个权值最大的异或和不为0的集合 终于有点明白线性基是什么了...等会再整理 求一个权值最大的线性无关子集 线性无关子集满足拟阵的性质,贪心选择权值最大的,用高 ...
- BZOJ 2466 中山市选2009 树 高斯消元+暴力
题目大意:树上拉灯游戏 高斯消元解异或方程组,对于全部的自由元暴力2^n枚举状态,代入计算 这做法真是一点也不优雅... #include <cstdio> #include <cs ...
随机推荐
- ajax获取的数据如何渲染到dom元素上
1.常见的字符串拼接 (对于动态创建的元素添加js时,使用事件委托,利用事件冒泡的原理,把事件添加到父级元素上,触发执行效果) $("ul").on('click','li',fu ...
- WebApi 接口返回值不困惑:返回值类型详解。IHttpActionResult、void、HttpResponseMessage、自定义类型
首先声明,我还没有这么强大的功底,只是感觉博主写的很好,就做了一个复制,请别因为这个鄙视我,博主网址:http://www.cnblogs.com/landeanfen/p/5501487.html ...
- 在平衡树的海洋中畅游(二)——Scapegoat Tree
在平衡树的广阔天地中,以Treap,Splay等为代表的通过旋转来维护平衡的文艺平衡树占了觉大部分. 然而,今天我们要讲的Scapegoat Tree(替罪羊树)就是一个特立独行的平衡树,它通过暴力重 ...
- sql语句——行列互换
SELECT 年份, SUM(case when 季度=1 then 销量 else 0 end) as 一季度, SUM(case when 季度=2 then 销量 else 0 end) as ...
- 蓝牙 link timeout分析
蓝牙主机和蓝牙设备建立连接之后,会在l2cap 层面上建立相应的channel,这些channel 基本上是用于各种不同的profile 或者protocol 进行通信用的. 当相应的profile或 ...
- Git常用命令梳理
在日常的Git版本库管理工作中用到了很多操作命令,以下做一梳理: 查看分支列表,带有*的分支表示是当前所在分支 [root@115~~]#git branch 查看分支详细情况 (推荐这种方式) [r ...
- 《Linux内核设计与实现》第十八章学习笔记
第十八章 调试 [学习时间:1小时 总结博客时间:1小时15分] [学习内容:出现bug的原因.内核调试器gdb.使用Git进行二分查找] 内核级开发的调试工作远比用户级开发艰难,它带来的风险比用户级 ...
- JHipster - Generate your Spring Boot + Angular/React applications!
JHipster - Generate your Spring Boot + Angular/React applications!https://www.jhipster.tech/
- WebPage设计专业术语
header footer master content placeholder breadcrumb 面包屑(breadcrumb)源于一个童话,在网站中就是一行层级属性链接组成的线性链接标示(我的 ...
- Effective C++(第三版)笔记 ---- 第一部分让自己习惯C++
内容从侯捷译版的<Effective C++>(第三版)摘录 条款一 C++作为一个多种范式融合的语言,可以看成是语言的联邦,它包含了一下四种主要的次语言: C.C++以C为基础,很多时候 ...