题目描述

输入

输出

样例输入

4 5
1 3 2 5
1 2
1 3
2 4
4 2 4
1 2 4
2 3 4
3 1 4 1
4 1 4

样例输出

16/3
6/1

提示

对于所有数据满足 1<=N<=50,000 1<=M<=50,000 1<=Ai<=10^6 1<=D<=100 1<=U,V<=N

前三个操作都很简单了,LCT就能维护,重点是第四个操作。

求一个区间所有子区间的区间和之和,直接求所有区间和不好求,我们换一种角度去做。

考虑每个点对区间的贡献,假设当前区间是[l,r],对于区间中的点k(l<=k<=r),它的贡献就是它的点权*(k-l+1)*(r-k+1)。

那么我们维护区间答案,考虑怎么上传及修改?

先说上传,就是将一个点的左儿子区间+这个点+这个点的右儿子区间合并。

我们设size[x]为x子树大小,也就是x子树所代表的区间的长度;ls代表左子树,rs代表右子树。

对于左区间,每个点的贡献要加上它从左往右数的排名*它的点权*(1+size[rs])。

对于右区间,每个点的贡献要加上它从右往左数的排名*它的点权*(1+size[ls])。

对于点x要加上它的点权*(1+size[ls])*(1+size[rs])。

发现排名*点权的和无法直接求,因此还要维护两个信息lv[x],rv[x],分别代表x子树所代表区间中每个点点权*从左/从右排名的和。

再看看这两个信息怎么合并,就以lv[x]为例吧,先将左右子节点的lv加上,左子树lv不变,右子树的lv发现每个点排名都加了(1+size[ls]),只要再加上右子树权值和*(1+size[ls])就好了。

综上所述,我们需要维护六个变量val,sum,lv,rv,size,ans,分别代表单点权值、子树权值和、点权*从左数排名之和、点权*从右数排名之和、子树节点数、区间所有子区间和之和即答案。

再说怎么修改?设n代表区间长,v为修改时的增量

val和sum比较常规在这就不说了。

lv和rv都加了

而ans则加了

最后这个推一个通项公式就好了。

知道怎么上传和修改后剩下的就LCT基本操作了。

但要注意翻转时也要把lv和rv交换且旋到原树根的操作splay之后不能只打标记,要先把当前点左右子树翻转,否则当前点的lv和rv是反的。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define ls s[rt][0]
#define rs s[rt][1]
using namespace std;
int n,m;
int x,y;
int opt;
ll z;
int r[50010];
int s[50010][2];
int f[50010];
int st[50010];
ll lv[50010];
ll rv[50010];
ll sum[50010];
ll size[50010];
ll val[50010];
ll ans[50010];
ll a[50010];
ll p,q;
ll res;
int get(int rt)
{
return s[f[rt]][1]==rt;
}
int is_root(int rt)
{
return s[f[rt]][1]!=rt&&s[f[rt]][0]!=rt;
}
void add(int rt,ll v)
{
val[rt]+=v;
sum[rt]+=v*size[rt];
lv[rt]+=v*size[rt]*(size[rt]+1)/2;
rv[rt]+=v*size[rt]*(size[rt]+1)/2;
ans[rt]+=v*size[rt]*(size[rt]+1)*(size[rt]+2)/6;
a[rt]+=v;
}
void flip(int rt)
{
swap(ls,rs);
swap(lv[rt],rv[rt]);
r[rt]^=1;
}
void pushup(int rt)
{
size[rt]=size[ls]+size[rs]+1;
sum[rt]=sum[ls]+sum[rs]+val[rt];
lv[rt]=lv[ls]+lv[rs]+(val[rt]+sum[rs])*(size[ls]+1);
rv[rt]=rv[ls]+rv[rs]+(val[rt]+sum[ls])*(size[rs]+1);
ans[rt]=ans[ls]+ans[rs]+val[rt]*(size[ls]+1)*(size[rs]+1)+lv[ls]*(size[rs]+1)+rv[rs]*(size[ls]+1);
}
void pushdown(int rt)
{
if(r[rt])
{
r[rt]^=1;
flip(ls);
flip(rs);
}
if(a[rt])
{
add(ls,a[rt]);
add(rs,a[rt]);
a[rt]=0;
}
}
void rotate(int rt)
{
int fa=f[rt];
int anc=f[fa];
int k=get(rt);
if(!is_root(fa))
{
s[anc][get(fa)]=rt;
}
s[fa][k]=s[rt][k^1];
f[s[fa][k]]=fa;
s[rt][k^1]=fa;
f[fa]=rt;
f[rt]=anc;
pushup(fa);
pushup(rt);
}
void splay(int rt)
{
int top=0;
st[++top]=rt;
for(int i=rt;!is_root(i);i=f[i])
{
st[++top]=f[i];
}
for(int i=top;i>=1;i--)
{
pushdown(st[i]);
}
for(int fa;!is_root(rt);rotate(rt))
{
if(!is_root(fa=f[rt]))
{
rotate(get(fa)==get(rt)?fa:rt);
}
}
}
void access(int rt)
{
for(int x=0;rt;x=rt,rt=f[rt])
{
splay(rt);
s[rt][1]=x;
pushup(rt);
}
}
void reverse(int rt)
{
access(rt);
splay(rt);
flip(rt);
}
void link(int x,int y)
{
reverse(x);
f[x]=y;
}
void cut(int x,int y)
{
reverse(x);
access(y);
splay(y);
if(s[x][1]||f[x]!=y)
{
return ;
}
s[y][0]=f[x]=0;
pushup(y);
}
void change(int x,int y,ll z)
{
reverse(x);
access(y);
splay(y);
add(y,z);
}
int find(int rt)
{
while(f[rt])
{
rt=f[rt];
}
return rt;
}
void split(int x,int y)
{
reverse(x);
access(y);
splay(y);
}
ll gcd(ll x,ll y)
{
if(y==0)
{
return x;
}
return gcd(y,x%y);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%lld",&val[i]);
pushup(i);
}
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
link(x,y);
}
while(m--)
{
scanf("%d%d%d",&opt,&x,&y);
if(opt==1)
{
if(find(x)==find(y))
{
cut(x,y);
}
}
else if(opt==2)
{
if(find(x)!=find(y))
{
link(x,y);
}
}
else if(opt==3)
{
scanf("%lld",&z);
if(find(x)==find(y))
{
split(x,y);
add(y,z);
}
}
else
{
if(find(x)==find(y))
{
split(x,y);
p=ans[y];
q=size[y]*(size[y]+1)/2;
res=gcd(p,q);
printf("%lld/%lld\n",p/res,q/res);
}
else
{
printf("-1\n");
}
}
}
}

BZOJ3091城市旅行——LCT区间信息合并的更多相关文章

  1. bzoj3091 城市旅行 LCT + 区间合并

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3091 题解 调了整个晚自习才调出来的问题. 乍一看是个 LCT 板子题. 再看一眼还是个 LC ...

  2. 【bzoj3091】城市旅行 LCT区间合并

    题目描述 输入 输出 样例输入 4 5 1 3 2 5 1 2 1 3 2 4 4 2 4 1 2 4 2 3 4 3 1 4 1 4 1 4 样例输出 16/3 6/1 题解 LCT区间合并 前三个 ...

  3. BZOJ3091 城市旅行 LCT

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3091 题意概括 鉴于本人语文不好,此题的描述原题很清晰,废话不多,请看原题. 可怕,原题是图片,不 ...

  4. BZOJ3091: 城市旅行(LCT,数学期望)

    Description Input Output Sample Input 4 5 1 3 2 5 1 2 1 3 2 4 4 2 4 1 2 4 2 3 4 3 1 4 1 4 1 4 Sample ...

  5. 【BZOJ3091】城市旅行 LCT

    [BZOJ3091]城市旅行 Description Input Output Sample Input 4 5 1 3 2 5 1 2 1 3 2 4 4 2 4 1 2 4 2 3 4 3 1 4 ...

  6. 【LCT】BZOJ3091 城市旅行

    3091: 城市旅行 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1927  Solved: 631[Submit][Status][Discuss ...

  7. bzoj 3091: 城市旅行 LCT

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=3091 题解: 首先前三个操作就是裸的LCT模板 只考虑第四个操作. 要求我们计算期望,所以我 ...

  8. BZOJ 3091: 城市旅行 [LCT splay 期望]

    3091: 城市旅行 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1454  Solved: 483[Submit][Status][Discuss ...

  9. BZOJ3091: 城市旅行

    Description Input Output Sample Input 4 5 1 3 2 5 1 2 1 3 2 4 4 2 4 1 2 4 2 3 4 3 1 4 1 4 1 4 Sample ...

随机推荐

  1. Html5 手机端网页不允许缩放

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <t ...

  2. SQL 行转列 列转行 PIVOT UNPIVOT

    1.基础表 2.行转列,注意ISNULL函数的使用,在总成绩的统计中,ISNULL(-,0) 有必要使用 3.列转行,对列语文.数学.英语.政治,进行列转行,转为了2列,score scname 这两 ...

  3. Android学习之基础知识四-Activity活动6讲(体验Activity的生命周期)

    一.体验活动的生命周期的执行 代码组成: 1.三个Java类:MainActivity.java.NormalActivity.java.DialogActivity.java 2.三个布局文件:ac ...

  4. Luogu P2661 [NOIP2015] 信息传递

    qwq 今天做完并查集突然想起来这道以前做的好(shui)题, 虽然是黄题,但是是并查集一个比较特别的用法 这道题大概可以用求最小环的方式来做,但是从直觉上果然还是并查集w 乍一看只要求出“父→子”即 ...

  5. 关于TCP和MQTT之间的转换

    现在物联网流行的就是MQTT 其实MQTT就是在TCP的基础上建立了一套协议 可以看这个,本来我自己想用Wireshark监听一下,不过百度一搜索一大把,我就不测试了 https://blog.csd ...

  6. 深度:Hadoop对Spark五大维度正面比拼报告!

    每年,市场上都会出现种种不同的数据管理规模.类型与速度表现的分布式系统.在这些系统中,Spark和hadoop是获得最大关注的两个.然而该怎么判断哪一款适合你? 如果想批处理流量数据,并将其导入HDF ...

  7. OpenStack中的虚拟机(/dev/mapper/centos-root)进行磁盘扩容

    一.虚拟机上先扩展分区: 二.centos系统root登入,新建分区 2.1 [fdisk -l] 最大分区为/dev/sda2,说明新创建的分区将会是sda3(在后面的步骤会进行选择) 2.2 输入 ...

  8. 【LeetCode105】Construct Binary Tree from Preorder and Inorder Traversal★★

    1.题目 2.思路 3.java代码 //测试 public class BuildTreeUsingInorderAndPreorder { public static void main(Stri ...

  9. UVA10559&POJ1390 Blocks 区间DP

    题目传送门:http://poj.org/problem?id=1390 题意:给出一个长为$N$的串,可以每次消除颜色相同的一段并获得其长度平方的分数,求最大分数.数据组数$\leq 15$,$N ...

  10. C#winform中调用wpf

    原文:C#winform中调用wpf 在WinForm中是可以使用WPF中的控件(或者由WPF创建的自定义控件) 1.新建一个winform项目: 2.在解决方案上新建一个wpf项目: 如图: 如果有 ...