【Vijos 1998】【SDOI 2016】平凡的骰子
https://vijos.org/p/1998
三维计算几何。
需要混合积求四面体体积;
四面体剖分后合并带权重心求总重心;
四面体重心的横纵坐标是四个顶点的横纵坐标的平均数;
三维差积求平面的法向量;
点积求法向量夹角(二面角)
这些知识就可以了AC此题了。
时间复杂度\(O(nf)\),注意\(n,f\leq 100\),题面描述有误。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 103;
const double Pi = acos(-1);
struct Point {
double x, y, z;
Point(double _x = 0, double _y = 0, double _z = 0) : x(_x), y(_y), z(_z) {}
Point operator / (const double &A) const {
return Point(x / A, y / A, z / A);
}
Point operator + (const Point &A) const {
return Point(x + A.x, y + A.y, z + A.z);
}
Point operator - (const Point &A) const {
return Point(x - A.x, y - A.y, z - A.z);
}
double operator * (const Point &A) const {
return x * A.x + y * A.y + z * A.z;
}
Point operator ^ (const Point &A) const {
return Point(y * A.z - z * A.y, z * A.x - x * A.z, x * A.y - y * A.x);
}
double len() {
return sqrt(x * x + y * y + z * z);
}
} P[N], H[N * N];
double val[N * N];
int n, F[N][N], m, Htot = 0;
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) scanf("%lf%lf%lf", &P[i].x, &P[i].y, &P[i].z);
for (int i = 1; i <= m; ++i) {
scanf("%d", &F[i][0]);
for (int j = 1; j <= F[i][0]; ++j)
scanf("%d", &F[i][j]);
}
Point u = P[1];
for (int i = 1; i <= m; ++i) {
Point u2 = P[F[i][1]], v1, v2;
for (int j = 2; j < F[i][0]; ++j) {
v1 = P[F[i][j]]; v2 = P[F[i][j + 1]];
H[++Htot] = (u + u2 + v1 + v2) / 4;
val[Htot] = fabs(((v1 - u2) ^ (v2 - u2)) * (u - u2));
}
}
double valtot = 0;
u = Point(0, 0, 0);
for (int i = 1; i <= Htot; ++i) {
valtot += val[i];
u = u + Point(H[i].x * val[i], H[i].y * val[i], H[i].z * val[i]);
}
u = u / valtot;
for (int i = 1; i <= m; ++i) {
double ans = 0, co;
Point u1, u2, u3;
for (int j = 1, s1, s2; j <= F[i][0]; ++j) {
s1 = j + 1; if (s1 > F[i][0]) s1 = 1;
s2 = s1 + 1; if (s2 > F[i][0]) s2 = 1;
u1 = P[F[i][j]] - u;
u2 = P[F[i][s1]] - u;
u3 = P[F[i][s2]] - u;
u1 = (u1 ^ u2);
u3 = (u3 ^ u2);
co = u1 * u3 / u1.len() / u3.len();
ans += acos(co);
}
ans -= (F[i][0] - 2) * Pi;
printf("%.7lf\n", ans / Pi / 4);
}
return 0;
}
【Vijos 1998】【SDOI 2016】平凡的骰子的更多相关文章
- [Sdoi2016]平凡的骰子
描述 这是一枚平凡的骰子.它是一个均质凸多面体,表面有n个端点,有f个面,每一面是一个凸多边形,且任意两面不共面.将这枚骰子抛向空中,骰子落地的时候不会发生二次弹跳(这是一种非常理想的情况).你希望知 ...
- [LOJ 2070] 「SDOI2016」平凡的骰子
[LOJ 2070] 「SDOI2016」平凡的骰子 [题目链接] 链接 [题解] 原题求的是球面面积 可以理解为首先求多面体重心,然后算球面多边形的面积 求重心需要将多面体进行四面体剖分,从而计算出 ...
- 【LOJ】#2070. 「SDOI2016」平凡的骰子
题解 用了一堆迷之复杂的结论结果迷之好写的计算几何???? 好吧,要写立体几何了 如果有名词不懂自己搜吧 首先我们求重心,我们可以求带权重心,也就是x坐标的话是所有分割的小四面体的x坐标 * 四面体体 ...
- SDOI 2016 游戏
树链剖分 线段树维护区间最小值,区间最大值 更新,对于每一个区间,找到当前区间的最小值的最大值,和要更新的值比较,如果比最大值还大,则此数对于以后的询问无任何贡献,直接返回即可,若有贡献,则一直递归到 ...
- SDOI 2016 数字配对
题目大意:给定n个数字以及每个数字的个数和权值,将满足条件的数字配对,使得总代价不小于0,且配对最多 最大费用最大流拆点,对于每个点,连一条由S到该点的边,容量为b,花费为0,再连一条到T的边 对于每 ...
- SDOI 2016 征途 决策单调性
题目大意:有一个数列,将其分成m段,求最小方差 先弄出n^3的dp,打出决策点,然后发现决策点是单调递增的,决策单调性搞一搞就可以了 #include<bits/stdc++.h> #de ...
- SDOI 2016 生成魔咒
题目大意:一个字符串,刚开始为空,依次在后面添加一个字符,问每次添加完字符后本质不同的字符串有多少种 后缀自动机裸题,添加字符时,更新的结点个数即为新增加的子串 #include<bits/st ...
- SDOI 2016 排列计数
题目大意:一个数列A,n个元素,其中m个元素不动,其他元素均不在相应位置,问有多少种排列 保证m个元素不动,组合数学直接计算,剩余元素错位排列一下即可 #include<bits/stdc++. ...
- 【BZOJ 4600】【SDOI 2016】硬币游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=4600 转化成nim游戏 因为对于每一个反面朝上的硬币编号可以拆成\(2^a3^bc\),选择这个硬币 ...
随机推荐
- Django进阶(路由系统、中间件、缓存、Cookie和Session、Ajax发送数据
路由系统 1.每个路由规则对应一个view中的函数 url(r'^index/(\d*)', views.index), url(r'^manage/(?P<name>\w*)/(?P&l ...
- php实现异步请求
PHP开启异步多线程执行脚本 装载自:http://www.cnblogs.com/clphp/p/4913214.html 场景要求 客户端调用服务器a.php接口,需要执行一个长达5s-20s不 ...
- java所搜引擎slor学习笔记(一)
java搜索引擎有很多,比较熟悉的就是slor和lucene. luncene: 概念:全文检索是计算机程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置.当用户查 ...
- 查看linux系统的信息
#!/bin/sh ################################################## #function:get host's information #Autho ...
- 服务发现 consul cluster 的搭建
consul cluster setup 介绍和指南: consul用于服务发现.当底层服务发生变化时,能及时更新正确的mysql服务IP. 并提供给业务查询.但需要自行编写脚本,监测数据库状态和切断 ...
- 系统架构之负载均衡【F5\nginx\LVS\DNS轮询\】
在做系统架构规划的时候,负载均衡,HA(高可用性集群,是保证业务连续性的有效解决方案,一般有两个或两个以上的节点,且分为活动节点及备用节点,当活动节点出现故障的时候,由备用节点接管)都是经常需要考虑的 ...
- SQL 根据关联表更新主表中字段数据
今天遇到一个客户的数据更新问题,两个相关联的表,一个主表用于保存单据主要信息,一个副表用于保存单据的明细信息:现在要把主表的其中一个字段的数据更新到副表的一个字段中保存.精通的SQL语法的,当然是很简 ...
- Hash 分布均衡算法
1.移位实现 public static int GetIndex(string str, int count) { , (current, c) => (current << ) ...
- Python 内置装饰器
内置的装饰器 内置的装饰器和普通的装饰器原理是一样的,只不过返回的不是函数,而是类对象,所以更难理解一些. @property 在了解这个装饰器前,你需要知道在不使用装饰器怎么写一个属性. d ...
- CF1030A 【In Search of an Easy Problem】
题目巨简单,主要是给大家翻译一下 给n个数,其中存在1就输出HARD,否则输出EASY,不区分大小写 #include<iostream> #include<cstdio> u ...