Frequently Asked Questions

Congratulations to be part of the first class of the Deep Learning Specialization! This form is here to help you find the answers to the commonly asked questions. We will update it as we receive new questions that we think are important for all learners.

General Questions

Q: I have an idea that would improve the course content. What can I do? A: Contact us at feedback@deeplearning.ai or put it in the forum "New ideas for the course". We are happy to collaborate with learners willing to improve the course! Thanks a lot.

Q: I cannot submit my assignment? A: This issue should not be happening but if it does please let us know immediately. One temporary work around would be to download your notebook and go to the corresponding programming assignment tab ==> + Create Submission and upload it.

Q: The audio in the videos is quite bad sometimes, muffled or low volume. Please fix it. A: You can mitigate the audio issues by turning down the bass and up the treble if you have those controls, or using a headset, which naturally emphasizes the higher frequencies. Also you may want to switch on the English closed captioning. Of course, we are working everyday to improve the quality of the videos and avoid anything that can affect your learning.

Q: What does it mean when I see “Math Processing Error?” A: The page is attempting to use MathJax to render math symbols. Sometimes the content delivery network can be sluggish or you have caught the web page Ajax javascript code in an incomplete state. Normally just refreshing the page to make it load fully fixes the problem.

Q: The video quality is bad? A: You could click the settings option in the video and upgrade the quality to High. (recommended if you have a good internet connection)

Q: Is there a prerequisite for this course? A: Students are expected to have the following background:

  • Very basic programming skills (i.e. ability to work with dictionaries and for loops)
  • Familiarity with basic machine learning (how do we represent a dataset as a matrix, etc.).
  • Familiarity with the basic linear algebra (matrix multiplications, vector operations etc.).

Q: Why do we have to use Python? A: Python is an open-source language, anyone can use it from anywhere in the world. It is widely used in academics (research labs) or in the industry. It has a useful library "Numpy" that makes math operations very easy. Python has several deep learning frameworks running on top of it (Tensorflow, Keras, PaddlePaddle, CNTK, Caffe, ...) and you are going to learn some of them. It is also easy to learn. Furthermore, we believe Python has a good future, as the community is really active and builds amazing stuff.

Q: Has anyone figured out the how to solve this problem? Here is my code [Insert code]. A: This is a violation of the Coursera Honor Code.

Q: I've submitted correct answers for [insert problem]. However I would like to compare my implementation with other who did correctly. A: This is a violation of the Coursera Honor Code.

Q: This is my email: [insert email]. Can we get the answer for the quiz? A: This is a violation of the Coursera Honor Code.

Q: Do I receive a certificate once I complete this course? A: Course Certificate is available in this course.

Q: What is the correct technique of entering a numeric answer to a text box question ? A: Coursera's software for numeric answers only supports '.' as the decimal delimiter (not ',') and require that fractions be simplified to decimals. For answers with many decimal digits, please use a 2 digits after decimal point rounding method when entering solutions if not mentioned in the question.

Q: What is the correct technique of entering a 1 element matrix ? A: They should be entered as just the element without brackets.

Q: What does a A being a 3 element vector or a 3 dimensional vector mean? A: If not described a vector as mentioned in the questions is

Q: I think I found an error in a video. What should I do? A: First, post it on the Errata forum. We will try to implement your feedback as soon as possible. You could also send us an email at feedback@deeplearning.ai.

Q: My quiz grade displayed is wrong or I have a verification issue or I cannot retake a quiz. What should I do? A: Contact learner support. These queries can only be resolved by learner support and it is best if they are contacted directly. Do not flag such issues.

----------------------------------------中文翻译--------------------------------------------------------

常见问题解答
恭喜你成为深度学习专业第一期的一员!这张表格是来帮助你找到常见问题的答案的。我们将更新它, 因为我们收到新的问题, 我们认为是重要的所有学习者。
一般问题
问: 我有一个想法, 可以改善课程内容。我能做什么?答: 联系我们在 feedback@deeplearning.ai feedback@deeplearning 或把它在论坛 "新的想法为路线"。我们乐于与学习者合作, 愿意改进课程!多谢。
问: 我不能提交我的作业?答: 这个问题不应该发生, 但如果有, 请立即通知我们。一个临时的工作将是下载您的笔记本, 然后转到相应的编程分配选项卡 == 创建提交并上传它。
问: 视频中的音频有时是相当糟糕的, 低沉或低音量。请修复它。答: 您可以通过关闭低音和高音来缓解音频问题, 如果您有这些控制, 或使用耳机, 这自然强调了更高的频率。此外, 您可能需要打开英文字幕。当然, 我们每天都在努力提高视频的质量, 避免任何影响你学习的事情。
问: 当我看到 "数学处理错误" 是什么意思?答: 该页试图使用 MathJax 来呈现数学符号。有时, 内容传递网络可能很慢, 或者您已经在不完整的状态下捕获了网页 Ajax javascript 代码。通常只是刷新页面, 使其加载完全解决问题。
问: 视频质量不好吗?答: 您可以单击视频中的 "设置" 选项, 并将质量提升到 "高"。(推荐如果您有一个好互联网连接)
问: 这门课有一个先决条件吗?答: 学生应具备以下背景:
非常基本的编程技能 (即使用字典和循环的能力)
熟悉基本机器学习 (如何将数据集表示为矩阵等)。
熟悉基本线性代数 (矩阵乘法, 向量运算等)。
问: 为什么我们必须使用 Python?答: Python 是一种开源语言, 任何人都可以在世界任何地方使用它。它广泛应用于学术界 (研究实验室) 或行业。它有一个有用的库 "Numpy", 使数学运算非常容易。Python 有几个深层次的学习框架在上面运行 (Tensorflow, Keras, PaddlePaddle, CNTK, Caffe,.....。学习也很容易。此外, 我们相信 Python 有一个良好的未来, 因为社区是真正活跃的, 并建立惊人的东西。
问: 有人想出解决这个问题的方法了吗?这是我的代码 [插入代码]。答: 这违反了 Coursera 的荣誉代码。
问: 我已经提交了 [插入问题] 的正确答案。不过, 我想把我的实现与其他谁做的正确的比较。答: 这违反了 Coursera 的荣誉代码。
问: 这是我的电子邮件: [插入电子邮件]。我们能得到测验的答案吗?答: 这违反了 Coursera 的荣誉代码。
问: 我完成本课程后是否收到证书?答: 课程证书在本课程中提供。
问: 对文本框问题输入数字答案的正确方法是什么?答: Coursera 的数字答案软件只支持 "." 作为小数点分隔符 (不是 ","), 并要求将分数简化为小数。对于有许多十进制数字的答案, 在输入解决方案时, 如果在问题中没有提到, 请在小数点舍入后使用2位数字。
问: 输入1元素矩阵的正确方法是什么?答: 它们应该只作为没有括号的元素输入。
问: A是一个3元向量或者3维向量是什么意思?答: 如果没有特别说明, 

问: 我想我在视频中发现了一个错误。我该怎么办?答: 首先, 将其张贴在勘误表论坛上。我们将尽快实施您的反馈。您也可以向我们发送电子邮件在 feedback@deeplearning.ai feedback@deeplearning。
问: 我的测验成绩显示是错误的, 或者我有一个验证问题, 或者我不能重考。我该怎么办?答: 联系学习者支持。这些查询只能由学习者支持解决, 如果直接与他们联系是最好的。不要标记此类问题。

课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 1、经常提及的问题的更多相关文章

  1. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  2. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  3. CVPR 2018paper: DeepDefense: Training Deep Neural Networks with Improved Robustness第一讲

    前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图 ...

  4. 课程一(Neural Networks and Deep Learning),第四周(Deep Neural Networks)—— 1.Practice Questions: Key concepts on Deep Neural Networks

    [解释] [解释] 比如算法中的learing rateα(学习率).iterations(梯度下降法循环的数量).L(隐藏层数目).n[l] (隐藏层单元数目).choice of activati ...

  5. 吴恩达 Deep learning 第一周 深度学习概论

    知识点 1. Relu(Rectified Liner Uints 整流线性单元)激活函数:max(0,z) 神经网络中常用ReLU激活函数,与机器学习课程里面提到的sigmoid激活函数相比有以下优 ...

  6. 吴恩达Machine Learning 第一周课堂笔记

    1.Introduction 1.1 Example        - Database mining        Large datasets from growth of automation/ ...

  7. Java课程课后作业之19学期之第一周博客作业

    作为一个大二的学生,自己已经不小了,没有大一那个时候的无忧无虑的可以放纵的时光,只剩下一年,我就该做出我人生的下一个重大决定了,这一次真的是我一个人的决定,从小到大,父母为我做过很多的决定,即使在小的 ...

  8. 第一周 Introduction

    欢迎 欢迎来到这门关于机器学习的免费网络课程,机器学习是近年来最激动人心的技术之一,在这门课中,你不仅可以了解机器学习的原理,更有机会进行实践操作,并且亲自运用所学的算法. 每天你都可能在不知不觉中使 ...

  9. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hyperparameter tuning, Batch Normalization and Programming Frameworks) —— 2.Programming assignments

    Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Ten ...

  10. Neural Networks and Deep Learning

    Neural Networks and Deep Learning This is the first course of the deep learning specialization at Co ...

随机推荐

  1. C#打印日志的小技巧

    public static void Log(params System.Object[] message) { string str = ""; if (message == n ...

  2. 用jQ实现一个简易计算器

    HTML和CSS结构: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  3. POJ 2376 Cleaning Shifts (贪心,区间覆盖)

    题意:给定1-m的区间,然后给定n个小区间,用最少的小区间去覆盖1-m的区间,覆盖不了,输出-1. 析:一看就知道是贪心算法的区间覆盖,主要贪心策略是把左端点排序,如果左端点大于1无解,然后, 忽略小 ...

  4. C#-VS字符串、日期、时间和时间段

    小知识 哈希表,内存中的对象,用速度很快的哈希表当字典表,记录主键和内容. @,遇到转义字符,不转义,直接输出,即就是.转义字符是反斜杠/ 全部的内置类型都用类和结构描述.值类型用结构,引用类型用类. ...

  5. NHibernate的搭建

    1.新建项目 Business:业务逻辑类 Data:数据层,存放数据库的操作及Nhibernate辅助类 Domain:数据实体和数据库映射文件 2.使用NuGet下载Nhibernate 数据库配 ...

  6. HDU2577 How to Type 2016-09-11 14:05 29人阅读 评论(0) 收藏

    How to Type Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  7. hdu 5685 Problem A (逆元)

    题目 题意:H(s)=∏i≤len(s)i=1(Si−28) (mod 9973),求一个字符串 子串(a 位到 b 位的)的哈希值.这个公式便是求字符串哈希值的公式,(字符的哈希值 = 字符的ASC ...

  8. Java中对比两个对象中属性值[反射、注解]

    在Java中通常要比较两个对象在修改前与修改后的值是否相同,一般我们采用的是反射技术获取对象的get方法[或其他的方法]获取值并做比较.如果系统将修改的属性名称也显示出来,这样就能更直观的显示类中的哪 ...

  9. Windows Phone 放开政策 - 应用内支付(IAP)可加入三方支付

    Windows Phone 应用商店在 今年(2013)11月04号 修改了商店政策 允许公司账户的应用使用三方支付SDK. 通过 App certification requirements cha ...

  10. Swagger中显示注释

    Webapi中Swagger中不显示注解的解决方法 1.找见生成项目时候生成的xml文件.查看存放路劲方法: 右键项目-->点击属性-->在属性中选择“生成”就能看见xml文件存放路径: ...