FFT模板(BZOJ2179)
实现了两个长度为n的大数相乘。
#include <cstdio>
#include <cmath>
#include <complex>
using namespace std;
#define pi acos(-1) typedef complex<double> C;
const int N = ;
char s[N],t[N];
int n,m,l,r[N],c[N];
C a[N],b[N]; void fft(C *a, int f) {
for(int i = ; i < n; i++) if(r[i] > i) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= ) {
C wn(cos(pi/i), f*sin(pi/i));
for(int j = ; j < n; j += i<<) {
C w = ;
for(int k = ; k < i; k++, w *= wn) {
C x = a[j+k], y = w*a[j+k+i];
a[j+k] = x+y, a[j+k+i] = x-y;
}
}
}
} int main() {
scanf("%d%s%s", &m, s, t);
for(int i = ; i < m; i++) a[i] = s[m-i-]-'', b[i] = t[m-i-]-'';
for(n = , m <<= ; n < m; n <<= ) l++;
for(int i = ; i < n; i++) r[i] = (r[i>>]>>)|((i&)<<(l-));
fft(a, ), fft(b, );
for(int i = ; i < n; i++) a[i] *= b[i];
fft(a, -);
for(int i = ; i < n; i++) a[i] /= n;
for(int i = ; i < m; i++) c[i] = (int)(a[i].real()+0.1);
for(int i = ; i < m; i++) if(c[i] >= ) {
c[i+] += c[i]/, c[i] %= ;
} else if(!c[i] && i == m-) m--;
for(int i = m-; ~i; i--) printf("%d", c[i]);
return ;
}
FFT模板(BZOJ2179)的更多相关文章
- 再写FFT模板
没什么好说的,今天又考了FFT(虽然不用FFT也能过)但是确实有忘了怎么写FFT了,于是乎只有重新写一遍FFT模板练一下手了.第一部分普通FFT,第二部分数论FFT,记一下模数2^23*7*17+1 ...
- HDU 1402 A * B Problem Plus (FFT模板题)
FFT模板题,求A*B. 用次FFT模板需要注意的是,N应为2的幂次,不然二进制平摊反转置换会出现死循环. 取出结果值时注意精度,要加上eps才能A. #include <cstdio> ...
- FFT模板(多项式乘法)
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...
- hdu1402(大数a*b&fft模板)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1402 题意: 给出两个长度1e5以内的大数a, b, 输出 a * b. 思路: fft模板 详情参 ...
- P1919 【模板】A*B Problem升级版 /// FFT模板
题目大意: 给定l,输入两个位数为l的数A B 输出两者的乘积 FFT讲解 这个讲解蛮好的 就是讲解里面贴的模板是错误的 struct cpx { double x,y; cpx(double _x= ...
- fft模板 HDU 1402
// fft模板 HDU 1402 #include <iostream> #include <cstdio> #include <cstdlib> #includ ...
- [hdu1402]大数乘法(FFT模板)
题意:大数乘法 思路:FFT模板 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ...
- 【bzoj2179】FFT快速傅立叶 FFT模板
2016-06-01 09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...
- UOJ#34 FFT模板题
写完上一道题才意识到自己没有在博客里丢过FFT的模板-- 这道题就是裸的多项式乘法,可以FFT,可以NTT,也可以用Karasuba(好像有人这么写没有T),也可以各种其他分治乘法乱搞-- 所以我就直 ...
随机推荐
- 【iOS】swift-获取webView的高度
func webViewDidFinishLoad(webView: UIWebView) { let webHeightStr = webView.stringByEvalu ...
- 深入分析Java Web中的编码问题
编码问题一直困扰着我,每次遇到乱码或者编码问题,网上一查,问题解决了,但是实际的原理并没有搞懂,每次遇到,都是什么头疼. 决定彻彻底底的一次性解决编码问题. 1.为什么要编码 计算机的基本单元是字节, ...
- 2017北京国庆刷题Day1 afternoon
期望得分:100+100+100=300 实际得分:100+100+100=300 T1 一道图论好题(graph) Time Limit:1000ms Memory Limit:128MB 题目 ...
- nyoj 寻找最大数(二)
寻找最大数(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 给你一个数字n(可能有前缀0). 要求从高位到低位,进行 进栈出栈 操作,是最后输出的结果最大. ...
- Python format 格式化函数
str.format() 格式化字符串的函数 str.format(),它增强了字符串格式化的功能. 基本语法是通过 {} 和 : 来代替以前的 % format 函数可以接受不限个参数,位置可以不按 ...
- vue下拉列表
最近在弄作品,做了个下拉列表.心想各位小哥哥.小姐姐可能会用到相同的需求,就把下拉列表封装一下,希望能对各位小哥哥,小姐姐有帮助 github地址:https://github.com/ClmPisc ...
- node.js的安装的配置
一.Node.js 安装配置 Node.js 提供在Windows和Linux上安装 1. Window 上安装Node.js 64 位安装包下载地址 : https://nodejs.org/di ...
- OpenID Connect 是什么?
一.OpenID Connect的概念 1.OpenID Connect 是什么? OpenID Connect 是一套基于 OAuth 2.0 协议的轻量级规范,提供通过 API 进行身份交互的框架 ...
- python--同步锁/递归锁/协程
同步锁/递归锁/协程 1 同步锁 锁通常被用来实现对共享资源的同步访问,为每一个共享资源创建一个Lock对象,当你需需要访问该资源时,调用acquire()方法来获取锁对象(如果其他线程已经获得了该锁 ...
- POJ-3641 Pseudoprime numbers---快速幂
题目链接: https://vjudge.net/problem/POJ-3641 题目大意: 问p是不是伪素数.伪素数条件:①p不是素数.② ap = a (mod p). 思路: 直接快速幂模板+ ...