ZOJ_2314_Reactor Cooling_有上下界可行流模板

The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:

f i,1+f i,2+...+f i,N = f 1,i+f 2,i+...+f N,i

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.

Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.

Output

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.

Sample Input

2

4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2

4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3

Sample Input

NO

YES
1
2
3
2
1
1


题意就是每条边有流量范围[L,R],问是否存在一种方案使得所有边上的流量都符合题意。

如果存在这样的方案需要输出方案。

考虑先强制让每条边流L的流量,这样每条边相当于有一个容量为R-L。

新建S,T。有一条边(x,y,l,r),连这样的边x->y(r-l), S->y(l), x->T(l),保证至少l流量。

然后跑出最大流,判断最大流是否等于l的和(S流出去的流量之和)。

每条边的实际流量就是残量+L。

但是这样做可能一个点连出去多条边,然后每次都连边就相当于S到x连了很多条边,这样显然非常sb。

于是可以记录一下每个点应该出去多少流量,如果是正的则连S,负的则连T。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 205
#define M 200050
#define S (n+1)
#define T (n+2)
#define inf 100000000
int head[N],to[M],nxt[M],cnt=1,flow[M],xx[M],yy[M],ll[M],rr[M],in[N];
int dep[N],Q[N],l,r,sum,n,m;
inline void add(int u,int v,int f) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0;
}
bool bfs() {
memset(dep,0,sizeof(dep));
dep[S]=1;l=r=0;Q[r++]=S;
while(l<r) {
int x=Q[l++],i;
for(i=head[x];i;i=nxt[i]) {
if(!dep[to[i]]&&flow[i]) {
dep[to[i]]=dep[x]+1;
if(to[i]==T) return 1;
Q[r++]=to[i];
}
}
}
return 0;
}
int dfs(int x,int mf) {
int i,nf=0;
if(x==T) return mf;
for(i=head[x];i;i=nxt[i]) {
if(dep[to[i]]==dep[x]+1&&flow[i]) {
int tmp=dfs(to[i],min(mf-nf,flow[i]));
if(!tmp) dep[to[i]]=0;
nf+=tmp;
flow[i]-=tmp;
flow[i^1]+=tmp;
if(nf==mf) break;
}
}
return nf;
}
void dinic() {
int f,i;
while(bfs()) while(f=dfs(S,inf)) sum-=f;
if(!sum) {
puts("YES");
for(i=1;i<=m;i++) {
printf("%d\n",ll[i]+flow[2*i+1]);
}
}else {
puts("NO");
}
puts("");
}
void solve() {
memset(head,0,sizeof(head));
memset(in,0,sizeof(in));
cnt=1; sum=0;
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=m;i++) {
scanf("%d%d%d%d",&xx[i],&yy[i],&ll[i],&rr[i]);
add(xx[i],yy[i],rr[i]-ll[i]);
in[xx[i]]-=ll[i];
in[yy[i]]+=ll[i];
}
for(i=1;i<=n;i++) {
if(in[i]>0) add(S,i,in[i]),sum+=in[i];
else if(in[i]<0) add(i,T,-in[i]);
}
dinic();
}
int main() {
int t;
scanf("%d",&t);
while(t--) solve();
}

ZOJ_2314_Reactor Cooling_有上下界可行流模板的更多相关文章

  1. 2018.08.20 loj#115. 无源汇有上下界可行流(模板)

    传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...

  2. 【LOJ115】无源汇有上下界可行流(模板题)

    点此看题面 大致题意: 给你每条边的流量上下界,让你判断是否存在可行流.若有,则还需输出一个合法方案. 大致思路 首先,每条边既然有一个流量下界\(lower\),我们就强制它初始流量为\(lower ...

  3. zoj 2314 Reactor Cooling (无源汇上下界可行流)

    Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...

  4. [loj#115] 无源汇有上下界可行流 网络流

    #115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题 ...

  5. loj#115. 无源汇有上下界可行流

    \(\color{#0066ff}{ 题目描述 }\) 这是一道模板题. \(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \ ...

  6. Zoj 2314 Reactor Cooling(无源汇有上下界可行流)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:    给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...

  7. poj2396 Budget(有源汇上下界可行流)

    [题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...

  8. POJ2396 Budget [有源汇上下界可行流]

    POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...

  9. 有源汇上下界可行流(POJ2396)

    题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...

随机推荐

  1. miniUI中弹出框问题

    ---恢复内容开始--- 设置页面弹出框并提交弹出框内容 弹出按钮 <a class="btn_color_1" onclick="onEdit(0)"& ...

  2. AngularJs 隔离作用域

    初学NG,有诸多的不解,今天看了一篇文章,原文地址:https://segmentfault.com/a/1190000002773689#articleHeader0 ,本文运行的代码也出处此. 里 ...

  3. python---数据类型---列表

    #列表: name = ["lc","pxm","pt"] print('------------',name[2],"----- ...

  4. Greenplum测试部署笔记

    按照官方Readme文档在Ubunut16.04上成功编译安装Greenplum最新代码(now:2017-11-12 21:40) 按照文档安装的过程中主要出现两个问题: 1.Root用户安装会卡在 ...

  5. Drupal7.8的安装注意的问题

    首先推荐在安装之前,首先阅读一下官方的Installation guide ,说实话话,这玩意安装没有Joomla安装那么平滑,大多数问题,guide都会提到.我是先安装后看的这个guide,比较折腾 ...

  6. "Uncaught object angular.js:36"诡异错误

    这个错误的调用顶级是jQuery.ready()函数,这个错误的原因是如果你在html元素里面定义ng-app,则在JavaScript里面必须初始化这个ngapp,初始化语句是: var AppNa ...

  7. 解决iframe在移动端(主要iPhone)上的问题

    前言 才发现已经有一段时间没有写博客了,就简单的说了最近干了啥吧.前段时间忙了杂七杂八的事情,首先弄了个个人的小程序,对的,老早就写了篇从零入手微信小程序开发,然后到前段时间才弄了个简单的个人小程序, ...

  8. vue项目在移动端(手机)调试

    查了很长一段时间的资料才搞好. 感悟就是:原来那么简单呐. 首要条件:同一局域网下(大致理解为链接相同的wifi) 1:命令行运行 ipconfig 2: 得到ipv4值, 用该值替换localhos ...

  9. 原生 JavaScript 实现扫雷

    学习了这么长时间的 JS,不能光看不练,于是就写了个小游戏练习一下.因为自己还是个菜鸟,所以有错误的话还请各位大佬多多指点,谢谢啦~ 如果感兴趣的话可以试试:Demo 项目地址:game-mineSw ...

  10. js基础进阶--图片上传时实现本地预览功能的原理

    欢迎访问我的个人博客:http://www.xiaolongwu.cn 前言 最近在项目上加一个图片裁剪上传的功能,用的是cropper插件,注意到选择本地图片后就会有预览效果,这里整理一下这种预览效 ...