ZOJ_2314_Reactor Cooling_有上下界可行流模板

The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:

f i,1+f i,2+...+f i,N = f 1,i+f 2,i+...+f N,i

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.

Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.

Output

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.

Sample Input

2

4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2

4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3

Sample Input

NO

YES
1
2
3
2
1
1


题意就是每条边有流量范围[L,R],问是否存在一种方案使得所有边上的流量都符合题意。

如果存在这样的方案需要输出方案。

考虑先强制让每条边流L的流量,这样每条边相当于有一个容量为R-L。

新建S,T。有一条边(x,y,l,r),连这样的边x->y(r-l), S->y(l), x->T(l),保证至少l流量。

然后跑出最大流,判断最大流是否等于l的和(S流出去的流量之和)。

每条边的实际流量就是残量+L。

但是这样做可能一个点连出去多条边,然后每次都连边就相当于S到x连了很多条边,这样显然非常sb。

于是可以记录一下每个点应该出去多少流量,如果是正的则连S,负的则连T。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 205
#define M 200050
#define S (n+1)
#define T (n+2)
#define inf 100000000
int head[N],to[M],nxt[M],cnt=1,flow[M],xx[M],yy[M],ll[M],rr[M],in[N];
int dep[N],Q[N],l,r,sum,n,m;
inline void add(int u,int v,int f) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0;
}
bool bfs() {
memset(dep,0,sizeof(dep));
dep[S]=1;l=r=0;Q[r++]=S;
while(l<r) {
int x=Q[l++],i;
for(i=head[x];i;i=nxt[i]) {
if(!dep[to[i]]&&flow[i]) {
dep[to[i]]=dep[x]+1;
if(to[i]==T) return 1;
Q[r++]=to[i];
}
}
}
return 0;
}
int dfs(int x,int mf) {
int i,nf=0;
if(x==T) return mf;
for(i=head[x];i;i=nxt[i]) {
if(dep[to[i]]==dep[x]+1&&flow[i]) {
int tmp=dfs(to[i],min(mf-nf,flow[i]));
if(!tmp) dep[to[i]]=0;
nf+=tmp;
flow[i]-=tmp;
flow[i^1]+=tmp;
if(nf==mf) break;
}
}
return nf;
}
void dinic() {
int f,i;
while(bfs()) while(f=dfs(S,inf)) sum-=f;
if(!sum) {
puts("YES");
for(i=1;i<=m;i++) {
printf("%d\n",ll[i]+flow[2*i+1]);
}
}else {
puts("NO");
}
puts("");
}
void solve() {
memset(head,0,sizeof(head));
memset(in,0,sizeof(in));
cnt=1; sum=0;
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=m;i++) {
scanf("%d%d%d%d",&xx[i],&yy[i],&ll[i],&rr[i]);
add(xx[i],yy[i],rr[i]-ll[i]);
in[xx[i]]-=ll[i];
in[yy[i]]+=ll[i];
}
for(i=1;i<=n;i++) {
if(in[i]>0) add(S,i,in[i]),sum+=in[i];
else if(in[i]<0) add(i,T,-in[i]);
}
dinic();
}
int main() {
int t;
scanf("%d",&t);
while(t--) solve();
}

ZOJ_2314_Reactor Cooling_有上下界可行流模板的更多相关文章

  1. 2018.08.20 loj#115. 无源汇有上下界可行流(模板)

    传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...

  2. 【LOJ115】无源汇有上下界可行流(模板题)

    点此看题面 大致题意: 给你每条边的流量上下界,让你判断是否存在可行流.若有,则还需输出一个合法方案. 大致思路 首先,每条边既然有一个流量下界\(lower\),我们就强制它初始流量为\(lower ...

  3. zoj 2314 Reactor Cooling (无源汇上下界可行流)

    Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...

  4. [loj#115] 无源汇有上下界可行流 网络流

    #115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题 ...

  5. loj#115. 无源汇有上下界可行流

    \(\color{#0066ff}{ 题目描述 }\) 这是一道模板题. \(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \ ...

  6. Zoj 2314 Reactor Cooling(无源汇有上下界可行流)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:    给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...

  7. poj2396 Budget(有源汇上下界可行流)

    [题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...

  8. POJ2396 Budget [有源汇上下界可行流]

    POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...

  9. 有源汇上下界可行流(POJ2396)

    题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...

随机推荐

  1. PyCharm导入pymysql包运行报错问题解决:No module named 'PyMySQL'

    import pymysql # 导入包 # 报错问题显示: ImportError: No module named 'PyMySQL' 出现该问题提示:找不到该包名. 解决办法如下: ①先下载Py ...

  2. python的logging模块之读取yaml配置文件。

    python的logging模块是用来记录应用程序的日志的.关于logging模块的介绍,我这里不赘述,请参见其他资料.这里主要讲讲如何来读取yaml配置文件进行定制化的日志输出. python要读取 ...

  3. Java中常用的数据结构类

    结构体系图 List ArrayList.LinkedList.Vector有什么区别? ArrayList 只能装入引用对象(基本类型要转换为封装类): 线程不安全: 底层由数组实现(顺序表),因为 ...

  4. 关于Python的super用法研究

    一.问题的发现与提出 在Python类的方法(method)中,要调用父类的某个方法,在python 2.2以前,通常的写法如代码段1: 代码段1: class A:  def __init__(se ...

  5. 安装Redis 编译make gcc: error trying to exec 'cc1': execvp: 没有该文件或目录的错误

    Linux(Redhat) make: gcc: error trying to exec 'cc1': execvp: 没有该文件或目录的错误 排查错误: 1.检查gcc.gcc-c++是否安装rp ...

  6. StringBuffer与StringBuilder

    有些时候,需要由较短的字符串构建字符串.比如,按键或来自文件中的单词.采用字符串连接的方式达到此目的效率比较低.每次连接字符串的时候,都会构建一个新的String对象,既耗时,又浪费空间.使用Stri ...

  7. IAAS-libvirt介绍。

    Libvirt介绍 Libvirt与hypervisor无关,其提供与多种操作系统虚拟化能力进行交互的API与工具库. Libvirt提供了一个通用稳定的抽象层,可以安全的操作物理机上的虚拟机,同时为 ...

  8. Python_正则表达式一

    ''' 常用的正则表达式元字符 . 匹配换行符以外的任意单个字符 * 匹配位于'*'之前的字符或子模的0次或多次出现 + 匹配位于'+'之前的字符或子模式的1次或多次出现 - 用在[]之内用来表示范围 ...

  9. 不使用JavaScript实现菜单的打开和关闭

    我在写有菜单栏的网页时,基本都会用响应式设计来适配移动端,例如把不重要的菜单选项隐藏,或者创建一个菜单按钮来控制的菜单的打开和关闭之类的.而我之前一直是使用JavaScript来实现菜单的打开和关闭的 ...

  10. [Kali_Metasploit]db_connect创建连接时无法连接的解决方案

    问题1复现路径: postgresql selected, no connection 第一步: db_connect postgres:toor@127.0.0.1/msfbook 连接成功不需要进 ...