ZOJ_2314_Reactor Cooling_有上下界可行流模板
ZOJ_2314_Reactor Cooling_有上下界可行流模板
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.
The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.
Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:
f i,1+f i,2+...+f i,N = f 1,i+f 2,i+...+f N,i
Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.
Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
Input
The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.
Output
On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.
Sample Input
2
4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2
4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3
Sample Input
NO
YES
1
2
3
2
1
1
题意就是每条边有流量范围[L,R],问是否存在一种方案使得所有边上的流量都符合题意。
如果存在这样的方案需要输出方案。
考虑先强制让每条边流L的流量,这样每条边相当于有一个容量为R-L。
新建S,T。有一条边(x,y,l,r),连这样的边x->y(r-l), S->y(l), x->T(l),保证至少l流量。
然后跑出最大流,判断最大流是否等于l的和(S流出去的流量之和)。
每条边的实际流量就是残量+L。
但是这样做可能一个点连出去多条边,然后每次都连边就相当于S到x连了很多条边,这样显然非常sb。
于是可以记录一下每个点应该出去多少流量,如果是正的则连S,负的则连T。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 205
#define M 200050
#define S (n+1)
#define T (n+2)
#define inf 100000000
int head[N],to[M],nxt[M],cnt=1,flow[M],xx[M],yy[M],ll[M],rr[M],in[N];
int dep[N],Q[N],l,r,sum,n,m;
inline void add(int u,int v,int f) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0;
}
bool bfs() {
memset(dep,0,sizeof(dep));
dep[S]=1;l=r=0;Q[r++]=S;
while(l<r) {
int x=Q[l++],i;
for(i=head[x];i;i=nxt[i]) {
if(!dep[to[i]]&&flow[i]) {
dep[to[i]]=dep[x]+1;
if(to[i]==T) return 1;
Q[r++]=to[i];
}
}
}
return 0;
}
int dfs(int x,int mf) {
int i,nf=0;
if(x==T) return mf;
for(i=head[x];i;i=nxt[i]) {
if(dep[to[i]]==dep[x]+1&&flow[i]) {
int tmp=dfs(to[i],min(mf-nf,flow[i]));
if(!tmp) dep[to[i]]=0;
nf+=tmp;
flow[i]-=tmp;
flow[i^1]+=tmp;
if(nf==mf) break;
}
}
return nf;
}
void dinic() {
int f,i;
while(bfs()) while(f=dfs(S,inf)) sum-=f;
if(!sum) {
puts("YES");
for(i=1;i<=m;i++) {
printf("%d\n",ll[i]+flow[2*i+1]);
}
}else {
puts("NO");
}
puts("");
}
void solve() {
memset(head,0,sizeof(head));
memset(in,0,sizeof(in));
cnt=1; sum=0;
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=m;i++) {
scanf("%d%d%d%d",&xx[i],&yy[i],&ll[i],&rr[i]);
add(xx[i],yy[i],rr[i]-ll[i]);
in[xx[i]]-=ll[i];
in[yy[i]]+=ll[i];
}
for(i=1;i<=n;i++) {
if(in[i]>0) add(S,i,in[i]),sum+=in[i];
else if(in[i]<0) add(i,T,-in[i]);
}
dinic();
}
int main() {
int t;
scanf("%d",&t);
while(t--) solve();
}
ZOJ_2314_Reactor Cooling_有上下界可行流模板的更多相关文章
- 2018.08.20 loj#115. 无源汇有上下界可行流(模板)
传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...
- 【LOJ115】无源汇有上下界可行流(模板题)
点此看题面 大致题意: 给你每条边的流量上下界,让你判断是否存在可行流.若有,则还需输出一个合法方案. 大致思路 首先,每条边既然有一个流量下界\(lower\),我们就强制它初始流量为\(lower ...
- zoj 2314 Reactor Cooling (无源汇上下界可行流)
Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...
- [loj#115] 无源汇有上下界可行流 网络流
#115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 题 ...
- loj#115. 无源汇有上下界可行流
\(\color{#0066ff}{ 题目描述 }\) 这是一道模板题. \(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \ ...
- Zoj 2314 Reactor Cooling(无源汇有上下界可行流)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意: 给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...
- poj2396 Budget(有源汇上下界可行流)
[题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...
- POJ2396 Budget [有源汇上下界可行流]
POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...
- 有源汇上下界可行流(POJ2396)
题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...
随机推荐
- Maximum Subarray(最大子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- 前端工程师的修真秘籍(css、javascript和其它)
以我的经验,大部分技术,熟读下列四类书籍即可. 入门,用浅显的语言和方式讲述正确的道理和方法,如head first系列 全面,巨细无遗地探讨每个细节,遇到疑难问题时往往可以在这里得到理论解答,如De ...
- VS2017安装包不占用C盘空间的方法,亲试
问题:普通VS2017的安装方式,不论是在线安装还是下载的离线安装包,都会在安装过程中将安装包保存在C:\ProgramData\Microsoft\VisualStudio\Packages文件夹下 ...
- python自动重试第三方包retrying
最近写了一个爬虫,需要连接国外的一个网站,经常出现掉线的情况,自己写了一个自动重连的代码,但感觉不够简洁... 后来就上万能的github,找到了一个第三包,基本能满足我的要求.这个第三方包就是ret ...
- linux快速清空文件 比如log日志
linux中快速清空文件内容的几种方法这篇文章主要介绍了linux中快速清空文件内容的几种方法,需要的朋友可以参考下 权限要求: 至少执行用户对该文件有写的权限 --w------- 1 QA_Dep ...
- 新知识:JQuery语法基础与操作
jQuery是一个快速.简洁的JavaScript框架,是继Prototype之后又一个优秀的JavaScript代码库(或JavaScript框架).jQuery设计的宗旨是"write ...
- mysql distinct field1,field2,field3, .... from table
mysql distinct field1,field2,field3, .... from table 我们知道 这样的sql可以去掉重复项 (field1的重复项); select distinc ...
- Lintcode397 Longest Increasing Continuous Subsequence solution 题解
[题目描述] Give an integer array,find the longest increasing continuous subsequence in this array. An in ...
- Android Gradle 自定义Task 详解
转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/76408024 本文出自[赵彦军的博客] 一:Gradle 是什么 Gradle是一 ...
- httpClient连接超时设置
注: 每个HttpClinet对象设置都不一样 这里已3.x和4.x为例说明 1)3.X版本 创建连接 HttpClient httpClient=new DefaultHttpClient(); 这 ...