每一位维护一颗线段树

(-1)^1 =-2

(-2)^1=-1

#include <cstdio>
#include<iostream>
using namespace std;
//#define int long long
#define si signed
#define sc(x) scanf("%d", &x);
#define P pair<int, int>
int lazy[][];
int sum[][];
int A[];
int n, m;
void pushdown(int id, int x, int l, int r)
{
if (lazy[id][x] == )
{
lazy[id][x] = ;
int mid = l + r >> ;
lazy[id][x << ] ^= ;
sum[id][x << ] = (mid - l + ) - sum[id][x << ];
lazy[id][x << | ] ^= ;
sum[id][x << | ] = (r - mid) - sum[id][x << | ];
}
else if (lazy[id][x] == -)
{
lazy[id][x] = ;
int mid = l + r >> ;
lazy[id][x << ] = -;
sum[id][x << ] = (mid - l + );
lazy[id][x << | ] = -;
sum[id][x << | ] = (r - mid);
}
else if (lazy[id][x] == -)
{
lazy[id][x] = ;
int mid = l + r >> ;
lazy[id][x << ] = -;
sum[id][x << ] = ;
lazy[id][x << | ] = -;
sum[id][x << | ] = ;
}
}
void pushup(int id, int x)
{
sum[id][x] = sum[id][x << ] + sum[id][x << | ];
}
void build(int id, int l, int r, int x)
{
lazy[id][x] = ;
if (l == r)
{
sum[id][x] = ((A[l] >> id) & );
return;
}
int mid = (l + r) / ;
build(id, l, mid, x << );
build(id, mid + , r, x << | );
pushup(id, x);
}
void update(int id, int l, int r, int x, int type, int L, int R)
{
if (type == )
{
// cout<<type<<"type"<<endl; if (l >= L && r <= R)
{
lazy[id][x] ^= ;
sum[id][x] = (r - l + ) - sum[id][x];
//cout<<L<<' '<<R<<endl;
return;
}
pushdown(id, x, l, r);
int mid = (l + r) >> ;
if (L <= mid)
update(id, l, mid, x << , type, L, R);
if (R > mid)
update(id, mid + , r, x << | , type, L, R);
pushup(id, x);
}
else if (type == )
{ if (l >= L && r <= R)
{
lazy[id][x] = -;
sum[id][x] = ;
return;
}
pushdown(id, x, l, r);
int mid = (l + r) >> ;
if (L <= mid)
update(id, l, mid, x << , type, L, R);
if (R > mid)
update(id, mid + , r, x << | , type, L, R);
pushup(id, x);
}
else
{ if (l >= L && r <= R)
{
lazy[id][x] = -;
sum[id][x] = r - l + ;
return;
}
pushdown(id, x, l, r);
int mid = (l + r) >> ;
if (L <= mid)
update(id, l, mid, x << , type, L, R);
if (R > mid)
update(id, mid + , r, x << | , type, L, R);
pushup(id, x);
}
}
int query(int id, int l, int r, int x, int L, int R)
{
int ans = ;
if (L <= l && r <= R)
{
return sum[id][x];
}
pushdown(id, x, l, r);
int mid = l + r >> ;
if (L <= mid)
ans += query(id, l, mid, x << , L, R);
if (R > mid)
ans += query(id, mid + , r, x << | , L, R);
return ans;
}
si main()
{
int T;
sc(T)
string s;
while (T--)
{
sc(n) sc(m);
for (int i = ; i <= n; i++)
sc(A[i])
for (int i = ; i <; i++)
{
build(i, , n-, );
} int l,r,x;
while (m--)
{
cin >> s;
if (s[] == 'S')
{
sc(l) sc(r)
int ans=;
for(int i=;i<;i++){
ans +=query(i,,n-,,l,r)*(<<i);
}
cout<<ans<<'\n';
}
else if (s[] == 'X')
{
sc(x)
sc(l) sc(r) for(int i=;i<;i++){
if((x>>i)&){
update(i,,n-,,,l,r);
}
}
}
else if (s[] == 'O')
{
sc(x)
sc(l) sc(r) for(int i=;i<;i++){
if((x>>i)&){
update(i,,n-,,,l,r);
}
}
}
else
{
sc(x)
sc(l) sc(r) for(int i=;i<;i++){
if(!((x>>i)&)){
update(i,,n-,,,l,r);
}
}
}
}
} //system("pause");
}

xor or and 线段树的更多相关文章

  1. luogu P2574 XOR的艺术 (线段树)

    luogu P2574 XOR的艺术 (线段树) 算是比较简单的线段树. 当区间修改时.\(1 xor 1 = 0,0 xor 1 = 1\)所以就是区间元素个数减去以前的\(1\)的个数就是现在\( ...

  2. codeforces 22E XOR on Segment 线段树

    题目链接: http://codeforces.com/problemset/problem/242/E E. XOR on Segment time limit per test 4 seconds ...

  3. Codeforces Round #149 (Div. 2) E. XOR on Segment (线段树成段更新+二进制)

    题目链接:http://codeforces.com/problemset/problem/242/E 给你n个数,m个操作,操作1是查询l到r之间的和,操作2是将l到r之间的每个数xor与x. 这题 ...

  4. codeforces 242E. XOR on Segment 线段树

    题目链接 给n个数, 两种操作, 一种是求区间内的数的和, 一种是将区间内的数异或x. 异或x没有什么思路, 单个异或肯定超时, 区间异或也没有办法做....后来才知道可以按位建线段树, 这样建20棵 ...

  5. 洛谷 P2574 XOR的艺术(线段树 区间异或 区间求和)

    To 洛谷.2574 XOR的艺术 题目描述 AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个伤害串为长度为n的 ...

  6. 2018.08.22 hyc的xor/mex(线段树/01trie)

    hyc的xor/mex 描述 NOIP2017就要来了,备战太累,不如做做hyc的新题? 找回自信吧! 一句话题意:n个数,m个操作 操作具体来讲分两步 1.读入x,把n个数全部xor上x 2.询问当 ...

  7. XOR on segment(线段树区间异或更新)

    原题传送门 本题大意:给定n个数字和m个操作,操作共有两种,第一种是求解区间l到r上元素的和,第二种是将区间l到r的元素都异或一个x,作为某个位置的新值. 很容易想到线段树维护区间和,但是我们发现,在 ...

  8. 「 Luogu P2574 」 XOR的艺术——线段树

    # 解题思路 这题不难,但是原谅我一开始的傻逼想法,一会儿再给大家透露透露. 先说怎么做这题. 显然对于 $0$ 和 $1$ 来说,异或无非也就只有两种变化 异或了奇数次,$0$ 就会变成 $1$,$ ...

  9. CodeForces 242E - XOR on Segment 二维线段树?

    今天练习赛的题....又是线段树的变换..拿到题我就敲了个点更新区间查询的..果断超时...然后想到了可以将每个数与合表示成不进位的二进制数..这样就可以区间进行更新了..比赛的时候写搓了..刚重写了 ...

随机推荐

  1. Objective-C中的自动释放池

    自动释放池块@autoreleasepool 自动释放池块在MRC和ARC下都可以使用.在MARC下,为了将自动释放池块内部的变量放入自动释放池,需要手动调用autorelease方法:在ARC下,只 ...

  2. 虚拟机Vmware-网络配置

    非主业,只做简单介绍 虚拟机安装完毕后,需要进行网络配置. 虚拟机有 3 种网络连接方式: 仅主机模式 Host-only:仅支持 虚拟机与宿主机之间进行通信,无法连接外网 桥接模式 bridge:可 ...

  3. Python 从大型csv文件中提取感兴趣的行

    帮妹子处理一个2.xG 大小的 csv文件,文件太大,不宜一次性读入内存,可以使用open迭代器. with open(filename,'r') as file # 按行读取 for line in ...

  4. Freemarker模板的使用简介

    需要的jar包: 在pom.xml文件中贴入 <dependency> <groupId>junit</groupId> <artifactId>jun ...

  5. Ajax跳入error的原因

    1. dataType错误 我遇到的就是这个dataType错误,即后台返回的dataType类型与前台写的不一致,一般前台写json没问题,大部分是后台返回的类型对不上 2. async请求同步异步 ...

  6. Delphi 语句

  7. UILabel的行间距,字间距处理

    啥都不说了,直接上代码,做了一个Category #import <UIKit/UIKit.h> @interface UILabel (ChangeLineSpaceAndWordSpa ...

  8. 【洛谷P3338】力

    题目大意:求 \[ E_{j}=\sum_{i<j} \frac{q_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i}}{(i-j)^{2}} \] 题解:可以 ...

  9. h5页面弹窗时页面固定(弹窗下面的页面不滑动)

    页面出现弹窗时,底部页面不能随之滑动怎么解决? 只需将页面的body增加一个样式 overflow:hidden;就能解决 jq: //开启弹窗 $('body').attr('style','ove ...

  10. Levenberg-Marquardt优化和zipf分布

    最近审论文和看报告中遇到LM优化和齐普夫分布,于是查了一下. LM方法是高斯牛顿迭代方法的改进,下面分别是高斯牛顿.齐普夫方法的公式: Δ=−(JfTJf)−1JfTf,Δ=−(JfTJf+λI)−1 ...