[BZOJ1299]巧克力棒

Description

TBL和X用巧克力棒玩游戏。每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度。TBL先手两人轮流,无法操作的人输。 他们以最佳策略一共进行了10轮(每次一盒)。你能预测胜负吗?

Input

输入数据共20行。 第2i-1行一个正整数Ni,表示第i轮巧克力棒的数目。 第2i行Ni个正整数Li,j,表示第i轮巧克力棒的长度。

Output

输出数据共10行。 每行输出“YES”或“NO”,表示TBL是否会赢。如果胜则输出"NO",否则输出"YES"

Sample Input

3

11 10 15

5

13 6 7 15 3

2

15 12

3

9 7 4

2

15 12

4

15 12 11 15

3

2 14 15

3

3 16 6

4

1 4 10 3

5

8 7 7 5 12

Sample Output

YES

NO

YES

YES

YES

NO

YES

YES

YES

NO

HINT

20%的分数,N<=5,L<=100。

40%的分数,N<=7。 50%的分数,L<=5,000。

100%的分数,N<=14,L<=1,000,000,000。

考虑我们要怎么赢,每次拿出火柴时让对手面对异或值为0的局面,并且让剩下的火柴中不存在异或值为0的局面,其实这就等价于火柴中存在异或值为0的集合。

所以我们可以把每堆火柴丢到线性基里面,判断这个值能否被异或出来即可。

#include<bits/stdc++.h>
#define lll long long
using namespace std;
lll read(){
lll x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
lll n,a[15],c[50],flag;
void insert(lll v){
for(lll i=32;i>=0;i--){
if(!(v>>i))continue;
if(!c[i]){c[i]=v;break;}
v^=c[i];if(!v){flag=1;break;}
}
}
void work(){
flag=0;memset(c,0,sizeof(c));
n=read();for(lll i=1;i<=n;i++)a[i]=read(),insert(a[i]);
if(flag)printf("NO\n");else printf("YES\n");
}
int main(){
lll t=10;
while(t--)work();
}

[BZOJ1299]巧克力棒(博弈论,线性基)的更多相关文章

  1. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

  2. BZOJ3759: Hungergame 博弈论+线性基

    学了新的忘了旧的,还活着干什么 题意:一些盒子,每步可选择打开盒子和取出已打开盒子的任意多石子,问先手是否必胜 搬运po姐的题解: 先手必胜的状态为:给出的数字集合存在一个异或和为零的非空子集,则先手 ...

  3. Nowcoder Playing Games ( FWT 优化 DP && 博弈论 && 线性基)

    题目链接 题意 : 给出 N 个数.然后问你最多取出多少石子使得在 NIM 博弈中.后手必胜 分析 :  Nim 博弈模型,后手必胜当且仅当各个堆的石子的数目的异或和为 0 转化一下.变成最少取多少石 ...

  4. darkbzoj #3759. Hungergame 博弈论 线性基 NIM

    LINK:Hungergame 放上一道简单题 复习一下. 考虑每次可以打开任意多个盒子 如果全打开了 那么就是一个NIM游戏了. 如果发现局面是异或为0的时候此时先手必胜了. 考虑局面不全体异或为0 ...

  5. bzoj 3759 Hungergame 博弈论+线性基

    和nim游戏类似 易证必败状态为:当前打开的箱子中石子异或和为0,没打开的箱子中不存在一个子集满足异或和为0 因为先手无论是取石子还是开箱子,后手都可以通过取石子来使状态变回原状态 所以只需判定是否有 ...

  6. 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论

    正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...

  7. 【BZOJ1299】巧克力棒(博弈论,线性基)

    [BZOJ1299]巧克力棒(博弈论,线性基) 题面 BZOJ 题解 \(Nim\)博弈的变形形式. 显然,如果我们不考虑拿巧克力棒出来的话,这就是一个裸的\(Nim\)博弈. 但是现在可以加入巧克力 ...

  8. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

  9. BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)

    题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...

随机推荐

  1. 访问 Django 项目的静态资源

    from django.urls import path, re_path from django.conf import settingsfrom django.views.static impor ...

  2. 浏览器端-W3School-JavaScript-HTML DOM:HTML DOM Element 对象

    ylbtech-浏览器端-W3School-JavaScript-HTML DOM:HTML DOM Element 对象 1.返回顶部 1. HTML DOM Element 对象 HTML DOM ...

  3. 三步解决IDEA系列开发工具 RubyMine、IntelliJ IDEA 卡顿问题

    近日有小伙伴跟我反映说自己的开发工具很卡,有没有什么解决方案?答案是当然有啦!接下来看看怎么设置! 1.打开RubyMine,或IDEA,上边工具栏选择Help,下拉选择Edit Custom VM ...

  4. 【转】Eureka集群

    Eureka作为SpringCloud的服务发现与注册中心,在整个的微服务体系中,处于核心位置.单一的eureka服务,显然不能满足高可用的实际生产环境,这就要求我们配置一个能够应对各种突发情况,具有 ...

  5. WPF VLC客户端和SDK的简单应用

    VLC_SDK编程指南 VLC 是一款自由.开源的跨平台多媒体播放器及框架,可播放大多数多媒体文件,以及 DVD.音频 CD.VCD 及各类流媒体协议.它可以支持目前市面上大多数的视频解码,除了Rea ...

  6. VirtualBox上Centos7磁盘扩容

    VirtualBox上Centos7磁盘扩容 非常实用 点击直达

  7. opengl入门篇一: 第一个三角形

    话说程序员有三大浪漫,操作系统.编译原理和计算机图形学.这里称作计算机图形学,而不是图形学,是为了避免歧义. opengl是干什么的,可以自行google.这里仅作为一个学习里程中的记录.不作为权威指 ...

  8. JavaScript日常学习4

    JavaScript事件 1.<button id="btn1" onclick="document.getElementById("btn1" ...

  9. IDEA使用git提交代码时,点了commit之后卡死在performing code analysis部分,或者performing code analysis结束后没有进入下一步操作

    把"Perform code analysis" 和 "Check TODO" 复选框前面的勾去掉就好了. 这个可能是因为所分析的目标文件太大了,造成一直分析不 ...

  10. P1596 【[USACO10OCT]湖计数Lake Counting】

    可爱的题面君~~ 个人感觉这题还是很简单的,就是一个完全不加工的找联通块个数 个人解题思路是先读入,然后循环一遍,遇到水就dfs,并把这个w所在的联通块“删除”,并在答案上加一 最后输出答案 具体注释 ...