Stacked Hourglass Networks for Human Pose Estimation

key words:
人体姿态估计 Human Pose Estimation 给定单张RGB图像,输出人体某些关键点的精确像素位置.
堆叠式沙漏网络 Stacked Hourglass Networks
多尺度特征  Features processed across all scales
特征用于捕捉人体的空间关系 Capture spatial relationships associated with body
中间监督 Intermediate supervision

图 - Stacked Hourglass Networks由多个 stacked hourglass 模块组成,通过重复进行bottom-up, top-down推断以估计人体姿态.

沙漏设计 Hourglass Design

动机:捕捉不同尺度下图片所包含的信息.
局部信息,对于比如脸部、手部等等特征很有必要,而最终的姿态估计需要对整体人体一致理解. 不同尺度下,可能包含了很多有用信息,比如人体的方位、肢体的动作、相邻关节点的关系等等.

Hourglass设计:

图 - 单个hourglass模块示例. 图中个方框分别对应一个residual模块. 整个hourglass中,特征数是一致的.

hourglass设置:
首先Conv层和Max Pooling层用于将特征缩放到很小的分辨率;
每一个Max Pooling(降采样)处,网络进行分叉,并对原来pre-pooled分辨率的特征进行卷积;
得到最低分辨率特征后,网络开始进行upsampling,并逐渐结合不同尺度的特征信息. 这里对较低分辨率采用的是最近邻上采样(nearest neighbor upsampling)方式,将两个不同的特征集进行逐元素相加.
整个hourglass是对称的,获取低分辨率特征过程中每有一个网络层,则在上采样的过程中相应低就会有一个对应网络层.

得到hourglass网络模块输出后,再采用两个连续的 1×1 Conv层进行处理,得到最终的网络输出.
Stacked Hourglass Networks输出heatmaps的集合,每一个heatmap表征了关节点在每个像素点存在的概率.
Residual模块提取了较高层次的特征(卷积路),同时保留了原有层次的信息(跳级路)。不改变数据尺寸,只改变数据深度。可以把它看做一个保尺寸的高级“卷积”层。

中间监督 Intermediate Supervision

Hourglass网络输出heatmaps集合(蓝色方框部分),与真值进行误差计算。 其中利用1×1的Conv层对heatmaps进行处理并将其添加回特征空间中,作为下一个hourglass model的输入特征。每一个Hourglass网络都添加Loss层.Intermediate Supervision的作用在[2]中提到:如果直接对整个网络进行梯度下降,输出层的误差经过多层反向传播会大幅减小,即发生vanishing gradients现象。 

为解决此问题,[2]在每个阶段的输出上都计算损失。这种方法称为intermediate supervision,可以保证底层参数正常更新。

堆栈沙漏与中级监督  Stack Hourglass with Intermediate Supervision

  正如本文开头所示,网络的核心结构为堆叠多个hourglass model,这为网络提供了重复自下而上,自上而下推理的机制,允许重新评估整个图像的初始估计和特征。实现这一过程的核心便是预测中级热度图并让中级热度图参与loss计算。

  如果对单一的Hourglass Model进行Intermediate Supervision,监督放在哪个位置比较合适呢?如果在网络进行上采样后提供监督,那么在更大的全球堆叠沙漏网络人类姿势估计上下文中,无法相对于彼此重新评估这些特征;如果在上采样之前监督,此时,给定像素处的特征是处理相对局部感受野的结果,因此不知道关键的全局线索。本文提供的解决方式是repeated bottom-up,top-down inference with Stacked hourglass(图解在本文文首),通过该方式, the network can maintain precise local information while considering and then reconsidering the overall coherence of the features。

Reference:

[1] https://blog.csdn.net/shenxiaolu1984/article/details/51094959

[2] Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on (2016)

[3] https://blog.csdn.net/zziahgf/article/details/72732220

论文笔记 Stacked Hourglass Networks for Human Pose Estimation的更多相关文章

  1. 论文阅读理解 - Stacked Hourglass Networks for Human Pose Estimation

    http://blog.csdn.net/zziahgf/article/details/72732220 keywords 人体姿态估计 Human Pose Estimation 给定单张RGB图 ...

  2. 【语义分割】Stacked Hourglass Networks 以及 PyTorch 实现

    Stacked Hourglass Networks(级联漏斗网络) 姿态估计(Pose Estimation)是 CV 领域一个非常重要的方向,而级联漏斗网络的提出就是为了提升姿态估计的效果,但是其 ...

  3. (转)Awesome Human Pose Estimation

    Awesome Human Pose Estimation 2018-10-08 11:02:35 Copied from: https://github.com/cbsudux/awesome-hu ...

  4. 论文笔记 《Maxout Networks》 && 《Network In Network》

    论文笔记 <Maxout Networks> && <Network In Network> 发表于 2014-09-22   |   1条评论 出处 maxo ...

  5. Deep High-Resolution Representation Learning for Human Pose Estimation

    Deep High-Resolution Representation Learning for Human Pose Estimation 2019-08-30 22:05:59 Paper: CV ...

  6. Learning Feature Pyramids for Human Pose Estimation(理解)

    0 - 背景 人体姿态识别是计算机视觉的基础的具有挑战性的任务,其中对于身体部位的尺度变化性是存在的一个显著挑战.虽然金字塔方法广泛应用于解决此类问题,但该方法还是没有很好的被探索,我们设计了一个Py ...

  7. human pose estimation

    2D Pose estimation主要面临的困难:遮挡.复杂背景.光照.真实世界的复杂姿态.人的尺度不一.拍摄角度不固定等. 单人姿态估计 传统方法:基于Pictorial Structures, ...

  8. 论文解读:3D Hand Shape and Pose Estimation from a Singl RGB Image

    本文链接:https://blog.csdn.net/williamyi96/article/details/89207640由于最近做到了一些 3D Hand Pose Estimation 相关的 ...

  9. DensePose: Dense Human Pose Estimation In The Wild(理解)

    0 - 背景 Facebook AI Research(FAIR)开源了一项将2D的RGB图像的所有人体像素实时映射到3D模型的技术(DensePose).支持户外和穿着宽松衣服的对象识别,支持多人同 ...

随机推荐

  1. Oracle:Redhat 7.4+Oracle Rac 11.2.0.4 执行root.sh报错处理

    一.报错信息 二.原因分析 因为RHEL 7使用systemd而不是initd运行进程和重启进程,而root.sh通过传统的initd运行ohasd进程 三.解决办法 在RHEL 7中ohasd需要被 ...

  2. JS中new操作符源码实现

    首先我们来看一下实例化一个对象做了浏览器做了什么事情 new的四步操作: 1. 创建一个空对象 2. 设置空对象的__proto__属性继承构造函数的prototype属性,也就是继承构造函数的原型对 ...

  3. uni-app学习(四)好用的插件2

    1. uni-app学习(四)好用的插件2 1.1. 树形结构 点击这里 1.2. 下拉刷新上拉加载组件 如果想把下拉上拉做成自定义的,更加好看,可以使用这个插件 地址这里 举个例子 1.3. 浮动键 ...

  4. 程序员的自我修养系列(一):优雅的代码管理工具之GitHub

    1.导言 代码管理是程序员经常遇到一个问题,很多童鞋将代码保存到本地硬盘,此种方法管理混乱,也存在代码丢失的风险,且版本无法控制,因此养成良好的代码管理习惯是程序员的必修课.在众多代码管理工具中笔者在 ...

  5. 我所认为的RESTful API最佳实践

    我所认为的RESTful API最佳实践 不要纠结于无意义的规范 在开始本文之前,我想先说这么一句:RESTful 真的很好,但它只是一种软件架构风格,过度纠结如何遵守规范只是徒增烦恼,也违背了使用它 ...

  6. 记录C#泛型

    常见的泛型类型 泛型类 class MyClass<T> { //...... } 泛型接口 interface GenericInterface<T> { void Gene ...

  7. Flask 安装环境(虚拟环境安装)

    Flask 安装环境 使用虚拟环境安装Flask,可以避免包的混乱和冲突,虚拟环境是python解释器的副本,在虚拟环境中你可以安装扩展包,为每个程序 单独创建虚拟环境,可以保证程序只能访问虚拟环境中 ...

  8. Mac遇到挖矿程序的应急方法

    Mac遇到挖矿程序应急的方法 工作笔记:   1.起因:监控发现jsonrpc挖矿报警,询问当事人描述当时情况是安装了sketch软件.   网上可以定位到该IOC   运行后该IOC流量依然可以观测 ...

  9. nginx 文件服务器配置,模板配置文件,有注释

    # For more information on configuration, see: # * Official English Documentation: http://nginx.org/e ...

  10. Windows文件夹共享和Unity的PersisterdataPath

    在共享机上存放unity开发的pc版本游戏,在其它机器双击就可以运行,但会遇到问题,比如: 游戏是需要下载资源的,默认情况下unity下载的资源是存放在persisterdataPath目录的,对于w ...