StreamSets 多线程 Pipelines
以下为官方文档:
Multithreaded Pipeline Overview
A multithreaded pipeline is a pipeline with an origin that supports parallel execution, enabling one pipeline to run in multiple threads.
Multithreaded pipelines enable processing high volumes of data in a single pipeline on one Data Collector, thus taking full advantage of all available CPUs on the Data Collector machine. When using multithreaded pipelines, make sure to allocate sufficient resources to the pipeline and Data Collector.
A multithreaded pipeline honors the configured delivery guarantee for the pipeline, but does not guarantee the order in which batches of data are processed.
How It Works
When you configure a multithreaded pipeline, you specify the number of threads that the origin should use to generate batches of data. You can also configure the maximum number of pipeline runners that Data Collector uses to perform pipeline processing.
A pipeline runner is a sourceless pipeline instance - an instance of the pipeline that includes all of the processors and destinations in the pipeline and represents all pipeline processing after the origin.
Origins perform multithreaded processing based on the origin systems they work with, but the following is true for all origins that generate multithreaded pipelines:
When you start the pipeline, the origin creates a number of threads based on the multithreaded property configured in the origin. And Data Collector creates a number of pipeline runners based on the pipeline Max Runners property to perform pipeline processing. Each thread connects to the origin system and creates a batch of data, and passes the batch to an available pipeline runner.
Each pipeline runner processes one batch at a time, just like a pipeline that runs on a single thread. When the flow of data slows, the pipeline runners wait idly until they are needed, generating an empty batch at regular intervals. You can configure the Runner Idle Time pipeline property specify the interval or to opt out of empty batch generation.
Multithreaded pipelines preserve the order of records within each batch, just like a single-threaded pipeline. But since batches are processed by different pipeline instances, the order that batches are written to destinations is not ensured.
For example, take the following multithreaded pipeline. The HTTP Server origin processes HTTP POST and PUT requests passed from HTTP clients. When you configure the origin, you specify the number of threads to use - in this case, the Max Concurrent Requests property:

Let's say you configure the pipeline to opt out of the Max Runners property. When you do this, Data Collector generates a matching number of pipeline runners for the number of threads.
With Max Concurrent Requests set to 5, when you start the pipeline the origin creates five threads and Data Collector creates five pipeline runners. Upon receiving data, the origin passes a batch to each of the pipeline runners for processing.
Conceptually, the multithreaded pipeline looks like this:

Each pipeline runner performs the processing associated with the rest of the pipeline. After a batch is written to pipeline destinations - in this case, Azure Data Lake Store 1 and 2 - the pipeline runner becomes available for another batch of data. Each batch is processed and written as quickly as possible, independently from batches processed by other pipeline runners, so the write-order of the batches can differ from the read-order.
At any given moment, the five pipeline runners can each process a batch, so this multithreaded pipeline processes up to five batches at a time. When incoming data slows, the pipeline runners sit idle, available for use as soon as the data flow increases.
StreamSets 多线程 Pipelines的更多相关文章
- StreamSets 部署 Pipelines 到 SDC Edge
可以使用如下方法: 下载edge 运行包并包含pipeline定义文件. 直接发布到edge 设备. 在data colelctor 机器配置并配置了edge server 地址(主要需要网络可访问) ...
- StreamSets 相关文章
相关streamsets 文章(不按顺序) 学习视频-百度网盘 StreamSets 设计Edge pipeline StreamSets Data Collector Edge 说明 streams ...
- StreamSets SDC RPC Pipelines说明
主要目的是进行跨pipeline 数据的通信,而不仅仅是内部pipeline 的通信,之间不同网络进行通信 一个参考图 pipeline 类型 origin destination 部署架构 使用多个 ...
- StreamSets使用指南
StreamSets使用指南 最近在调研Streamsets,照猫画虎做了几个最简单的Demo鉴于网络上相关资料非常少,做个记录. 1.简介 Streamsets是一款大数据实时采集和ETL工具,可以 ...
- python多线程爬虫设计及实现示例
爬虫的基本步骤分为:获取,解析,存储.假设这里获取和存储为io密集型(访问网络和数据存储),解析为cpu密集型.那么在设计多线程爬虫时主要有两种方案:第一种方案是一个线程完成三个步骤,然后运行多个线程 ...
- 抓包分析、多线程爬虫及xpath学习
1.抓包分析 1.1 Fiddler安装及基本操作 由于很多网站采用的是HTTPS协议,而fiddler默认不支持HTTPS,先通过设置使fiddler能抓取HTTPS网站,过程可参考(https:/ ...
- StreamSets学习系列之StreamSets的Core Tarball方式安装(图文详解)
不多说,直接上干货! 前期博客 StreamSets学习系列之StreamSets支持多种安装方式[Core Tarball.Cloudera Parcel .Full Tarball .Full R ...
- StreamSets 设计Edge pipeline
edge pipeline 运行在edge 执行模式,我们可以使用 data collector UI 进行edge pipeline 设计, 设计完成之后,你可以部署对应的pipeline到edge ...
- streamsets origin 说明
origin 是streamsets pipeline的soure 入口,只能应用一个origin 在pipeline中, 对于运行在不同执行模式的pipeline 可以应用不同的origin 独立模 ...
随机推荐
- LeetCode--171--Excel表列序号
问题描述: 给定一个Excel表格中的列名称,返回其相应的列序号. 例如, A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -> 27 AB -& ...
- LeetCode--111--最长公共前缀
问题描述: 给定一个二叉树,找出其最小深度. 最小深度是从根节点到最近叶子节点的最短路径上的节点数量. 说明: 叶子节点是指没有子节点的节点. 示例: 给定二叉树 [3,9,20,null,null, ...
- LeetCode--088--合并两个有序数组
方法1: class Solution(object): def merge(self, nums1, m, nums2, n): """ :type nums1: Li ...
- 2018焦作网络赛Mathematical Curse
题意:开始有个数k,有个数组和几个运算符.遍历数组的过程中花费一个运算符和数组当前元素运算.运算符必须按顺序花费,并且最后要花费完.问得到最大结果. 用maxv[x][y]记录到第x个元素,用完了第y ...
- Bash and a Tough Math Puzzle CodeForces - 914D (线段树二分)
大意:给定序列, 单点修改, 区间询问$[l,r]$内修改至多一个数后$gcd$能否为$x$ 这题比较有意思了, 要注意到询问等价于$[l,r]$内最多有1个数不为$x$的倍数 可以用线段树维护gcd ...
- win10 移动热点自动关闭
解决win10移动热点自动关闭
- jsp jsp九个内置对象
每个JSP页面在第一次被访问的时候,WEB容器都会把请求交给JSP引擎(即一个JAVA)程序.JSP引擎先将JSP翻译成一个_jspServlet实质也是一次servlet,然后按照 Servl ...
- httpclient 连接管理器
连接操作器 连接操作是客户端的底层套接字或可以通过外部实体,通常称为连接操作的被操作的状态的连接. OperatedClientConnection接口扩展了HttpClientConnection接 ...
- hadoop redis install (4)
reference: http://dblab.xmu.edu.cn/blog/131/ https://github.com/dmajkic/redis https://blog.csdn ...
- Maven 入门篇 ( 上 )
写这个 maven 的入门篇是因为之前在一个开发者会的动手实验中发现挺多人对于 maven 不是那么了解,所以就有了这个想法.这个入门篇分上下两篇.本文着重动手,用 maven 来构建运行 hello ...