题目描述

  现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示。其中第二组中的数字是两两互素的。求最小的非负整数n,满足对于任意的i,n - ai能被bi整除。

输入输出格式

  输入数据的第一行是一个整数k,(1 ≤ k ≤ 10)。接下来有两行,第一行是:a1,a2,...,ak,第二行是b1,b2,...,bk

输出所求的整数n。


  也就是求出n,让n满足bi|n-ai。我们将式子转化一下,bi|n-ai => n-aiΞ0(mod bi) => nΞai(mod bi),也就是一个同余方程了。如果只解决这一个,我们可以直接一个扩欧敲下去,但这里有k个方程。我们再看题,题目要求我们求出最小的n满足所有同余方程,并且b1,b2...bn两两互质。这不就是中国剩余定理吗?所以把板子打上去就可以了。这题要注意的是ai可能为负数,不过我们把它转成正的就可以了。还有就是直接乘会爆long long,所以我们还要用到喜闻乐见的龟快速乘。

#include <cstdio>
#define maxn 15
using namespace std; long long a[maxn], b[maxn], m[maxn], t[maxn]; inline long long read(){
register long long x(), f=; register char c(getchar());
while(c<''||''<c){ if(c=='-') f=-; c=getchar(); }
while(''<=c&&c<='')
x=(x<<)+(x<<)+(c^), c=getchar();
return x*f;
} inline long long mul(long long a, long long b, long long c){
long long ans=;
while(b){
if(b&) ans=(ans+a)%c;
a=(a<<)%c;
b>>=;
}
return ans;
} void ex_gcd(long long a, long long b, long long &x, long long &y){
if(!b) x=, y=;
else{
long long x1, y1;
ex_gcd(b, a%b, x1, y1);
x=y1, y=x1-a/b*y1;
}
} int main(){
long long n=read();
for(register int i=; i<=n; i++) a[i]=read();
for(register int i=; i<=n; i++) b[i]=read();
for(register int i=; i<=n; i++) a[i]=(a[i]%b[i]+b[i])%b[i];
long long tot=, tmp;
for(register int i=; i<=n; i++) tot*=b[i];
for(register int i=; i<=n; i++) m[i]=tot/b[i];
for(register int i=; i<=n; i++) ex_gcd(m[i], b[i], t[i], tmp),t[i]=(t[i]%b[i]+b[i])%b[i];
long long ans=;
for(register int i=; i<=n; i++) ans=(ans+mul(mul(a[i],m[i],tot),t[i],tot))%tot;
ans=(ans+tot)%tot;
printf("%lld\n", ans);
return ;
}

  刚学懂中国剩余定理的可以来肝这个裸题。

[TJOI2009]猜数字的更多相关文章

  1. P3868 [TJOI2009]猜数字

    [TJOI2009]猜数字 中国剩余定理 求解i=1 to n : x≡a[i] (mod b[i])的同余方程组 设 t= ∏i=1 to n b[i] 我们先求出 i=1 to n : x≡1 ( ...

  2. CRT【p3868】[TJOI2009]猜数字

    Description 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n ...

  3. [Luogu3868] [TJOI2009]猜数字

    题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...

  4. [TJOI2009]猜数字(洛谷 3868)

    题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...

  5. [TJOI2009] 猜数字 - 中国剩余定理

    现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意的i,n ...

  6. Luogu P3868 [TJOI2009]猜数字

    题目链接 \(Click\) \(Here\) 中国剩余定理的板子.小心取模. #include <bits/stdc++.h> using namespace std; const in ...

  7. 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)

    洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...

  8. 洛谷 P3868 [TJOI2009]猜数字

    题意简述 给定\(a[1],a[2],\cdots,a[n]\) 和 \(b[1],b[2],\cdots,b[n]\),其中\(b\)中元素两两互素. 求最小的非负整数\(n\),满足对于任意的\( ...

  9. C语言猜数字游戏

    猜数字游戏,各式各样的实现方式,我这边提供一个实现方式,希望可以帮到新手. 老程序猿就不要看了,黑呵呵 源代码1 include stdio.h include stdlib.h include ti ...

随机推荐

  1. oracle12 group by 拼接字符串

    select listagg(合并字段,'连接符号') within group (order by 排序字段) as 别名 from 表 group by 字段

  2. python田忌赛马

    一,简介 田忌赛马的故事大家都知道我就不展开说了,田忌能用同全面被碾压的马赢了齐威王(公子),我觉得这是十分具有智慧的.但是,如果说这里的条件改为:1,田忌的马比齐威王同等次的马弱一点但是比齐威王下一 ...

  3. TopCoder Div2

    代码附在文末. 多组数据一定要初始化啊啊啊 贪心要[大胆]猜想,小心证明 A 题目翻译 题目描述 有两个正整数A和B,两个操作+3或者-2. 问,至少多少次操作可以让A变到B 输入 多组数据,第一行一 ...

  4. Spring Boot + JPA(hibernate 5) 开发时,数据库表名大小写问题

      (转载)Spring Boot + JPA(hibernate 5) 开发时,数据库表名大小写问题   这几天在用spring boot开发项目, 在开发的过程中遇到一个问题hibernate在执 ...

  5. MyISAM和Innodb区别,为什么?

    事务支持 MyISAM不支持事务,而InnoDB支持. InnoDB的AUTOCOMMIT默认是打开的,即每条SQL语句会默认被封装成一个事务,自动提交,这样会影响速度, 所以最好是把多条SQL语句显 ...

  6. 解析Json文件

    一: /** * 把json文件读取到内存中 * * @throws IOException */ public String getFile(String filePath) throws IOEx ...

  7. dtNavMeshQuery::findLocalNeighbourhood m_tinyNodePool->getNode dtHashRef整数哈希 getPortalPoints dtOverlapPolyPoly2D

    dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radiu ...

  8. PDF的水印怎么去掉

    很多朋友私下都有问过PDF去除水印的方法,现在在网上下载一些PDF电子书,几乎页面内都会有水印的,而且有的水印还带有超链接,稍微不注意就会点开进入别的页面内,不仅影响了阅读效果还带给读者负面影响,那如 ...

  9. SQL 序列-DML-DML-数据类型-用户管理、权限-事务-视图

    --DML--insert关键字--作用:往表中插入一条(多条)记录 --元祖(tuple)值式的插入(一次插入一条记录)--语法1:insert into tablename(column1,col ...

  10. linux中MTDflash设备驱动大概

    一.主要结构体 1.mtd_info,主要是描述MTD原始设备层中的设备或分区, 2.mtd_part,表示一个分区,用里面的主mtd_info和本分区mtd_info描述分区, 3.mtd_part ...