题目描述

  现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示。其中第二组中的数字是两两互素的。求最小的非负整数n,满足对于任意的i,n - ai能被bi整除。

输入输出格式

  输入数据的第一行是一个整数k,(1 ≤ k ≤ 10)。接下来有两行,第一行是:a1,a2,...,ak,第二行是b1,b2,...,bk

输出所求的整数n。


  也就是求出n,让n满足bi|n-ai。我们将式子转化一下,bi|n-ai => n-aiΞ0(mod bi) => nΞai(mod bi),也就是一个同余方程了。如果只解决这一个,我们可以直接一个扩欧敲下去,但这里有k个方程。我们再看题,题目要求我们求出最小的n满足所有同余方程,并且b1,b2...bn两两互质。这不就是中国剩余定理吗?所以把板子打上去就可以了。这题要注意的是ai可能为负数,不过我们把它转成正的就可以了。还有就是直接乘会爆long long,所以我们还要用到喜闻乐见的龟快速乘。

#include <cstdio>
#define maxn 15
using namespace std; long long a[maxn], b[maxn], m[maxn], t[maxn]; inline long long read(){
register long long x(), f=; register char c(getchar());
while(c<''||''<c){ if(c=='-') f=-; c=getchar(); }
while(''<=c&&c<='')
x=(x<<)+(x<<)+(c^), c=getchar();
return x*f;
} inline long long mul(long long a, long long b, long long c){
long long ans=;
while(b){
if(b&) ans=(ans+a)%c;
a=(a<<)%c;
b>>=;
}
return ans;
} void ex_gcd(long long a, long long b, long long &x, long long &y){
if(!b) x=, y=;
else{
long long x1, y1;
ex_gcd(b, a%b, x1, y1);
x=y1, y=x1-a/b*y1;
}
} int main(){
long long n=read();
for(register int i=; i<=n; i++) a[i]=read();
for(register int i=; i<=n; i++) b[i]=read();
for(register int i=; i<=n; i++) a[i]=(a[i]%b[i]+b[i])%b[i];
long long tot=, tmp;
for(register int i=; i<=n; i++) tot*=b[i];
for(register int i=; i<=n; i++) m[i]=tot/b[i];
for(register int i=; i<=n; i++) ex_gcd(m[i], b[i], t[i], tmp),t[i]=(t[i]%b[i]+b[i])%b[i];
long long ans=;
for(register int i=; i<=n; i++) ans=(ans+mul(mul(a[i],m[i],tot),t[i],tot))%tot;
ans=(ans+tot)%tot;
printf("%lld\n", ans);
return ;
}

  刚学懂中国剩余定理的可以来肝这个裸题。

[TJOI2009]猜数字的更多相关文章

  1. P3868 [TJOI2009]猜数字

    [TJOI2009]猜数字 中国剩余定理 求解i=1 to n : x≡a[i] (mod b[i])的同余方程组 设 t= ∏i=1 to n b[i] 我们先求出 i=1 to n : x≡1 ( ...

  2. CRT【p3868】[TJOI2009]猜数字

    Description 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n ...

  3. [Luogu3868] [TJOI2009]猜数字

    题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...

  4. [TJOI2009]猜数字(洛谷 3868)

    题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...

  5. [TJOI2009] 猜数字 - 中国剩余定理

    现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意的i,n ...

  6. Luogu P3868 [TJOI2009]猜数字

    题目链接 \(Click\) \(Here\) 中国剩余定理的板子.小心取模. #include <bits/stdc++.h> using namespace std; const in ...

  7. 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)

    洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...

  8. 洛谷 P3868 [TJOI2009]猜数字

    题意简述 给定\(a[1],a[2],\cdots,a[n]\) 和 \(b[1],b[2],\cdots,b[n]\),其中\(b\)中元素两两互素. 求最小的非负整数\(n\),满足对于任意的\( ...

  9. C语言猜数字游戏

    猜数字游戏,各式各样的实现方式,我这边提供一个实现方式,希望可以帮到新手. 老程序猿就不要看了,黑呵呵 源代码1 include stdio.h include stdlib.h include ti ...

随机推荐

  1. Python 实现 动态规划 /斐波那契数列

    1.斐波那契数列 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数 ...

  2. pycharm中split的应用

    #input 字符串 “5+9” value = "5+9" v1,v2 = value.split("+")#意思是把加号前后的5和9分别赋值给v1,v2 v ...

  3. win7电脑蓝牙 耳机

    == services.msc 然后点击确定. 在服务中我们找到关于蓝牙的设置,双击进入. 将启动类型改成自动或手动,确定后就能使用蓝牙啦. == win7电脑蓝牙耳机 记得之前链接耳机的时候 需要下 ...

  4. Docker操作笔记(三)数据管理

    数据管理 一.数据卷 数据卷 是一个可供一个或多个容器使用的特殊目录,它绕过 UFS,可以提供很多有用的特性: 数据卷 可以在容器之间共享和重用 对 数据卷 的修改会立马生效 对 数据卷 的更新,不会 ...

  5. arcgis中转换netCDF为栅格数据

    最近有个同学询问我一个问题,使用arcpy把netcdf转化成栅格文件,忙活了两个小时才搞定,其实主要代码非常简单,只不过要对arcgis 的功能比较熟悉(其实多思考和查考它的帮助文章,无聊) # - ...

  6. S0.3 直方图

    目录 直方图(一) 直方图概念 直方图分类 直方图优点 直方图应用 opencv3直方图产生函数cvCalcHist() 画图函数 完整示例 直方图(一) 直方图概念 直方图是图像中像素强度分布的图形 ...

  7. VB进行RGB分色

    Option Explicit Private Type RGBA R As Byte G As Byte B As Byte A As Byte End Type Private Declare S ...

  8. flask之入门

    本篇导航: Flask介绍 简单使用 排错 小结 一. Flask介绍 Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug ...

  9. vue_eHungry 饿了么

    eHungry 仿饿了么 git 操作 git checkout -b dev        // 创建新分支 dev git push origin dev        // 代码推送到 dev ...

  10. 什么是Hash?Hash有哪些特性?

    Hash 把任意长度的输入通过散列算法变换成固定长度的输出 Hash的特性: 输入域无穷,输出域有限.例如:有无穷多个(在工程中可以具体到多少个,例如1000)输入参数经过hash函数映射后得到有限的 ...