[TJOI2009]猜数字
题目描述
现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示。其中第二组中的数字是两两互素的。求最小的非负整数n,满足对于任意的i,n - ai能被bi整除。
输入输出格式
输入数据的第一行是一个整数k,(1 ≤ k ≤ 10)。接下来有两行,第一行是:a1,a2,...,ak,第二行是b1,b2,...,bk
输出所求的整数n。
也就是求出n,让n满足bi|n-ai。我们将式子转化一下,bi|n-ai => n-aiΞ0(mod bi) => nΞai(mod bi),也就是一个同余方程了。如果只解决这一个,我们可以直接一个扩欧敲下去,但这里有k个方程。我们再看题,题目要求我们求出最小的n满足所有同余方程,并且b1,b2...bn两两互质。这不就是中国剩余定理吗?所以把板子打上去就可以了。这题要注意的是ai可能为负数,不过我们把它转成正的就可以了。还有就是直接乘会爆long long,所以我们还要用到喜闻乐见的龟快速乘。
#include <cstdio>
#define maxn 15
using namespace std; long long a[maxn], b[maxn], m[maxn], t[maxn]; inline long long read(){
register long long x(), f=; register char c(getchar());
while(c<''||''<c){ if(c=='-') f=-; c=getchar(); }
while(''<=c&&c<='')
x=(x<<)+(x<<)+(c^), c=getchar();
return x*f;
} inline long long mul(long long a, long long b, long long c){
long long ans=;
while(b){
if(b&) ans=(ans+a)%c;
a=(a<<)%c;
b>>=;
}
return ans;
} void ex_gcd(long long a, long long b, long long &x, long long &y){
if(!b) x=, y=;
else{
long long x1, y1;
ex_gcd(b, a%b, x1, y1);
x=y1, y=x1-a/b*y1;
}
} int main(){
long long n=read();
for(register int i=; i<=n; i++) a[i]=read();
for(register int i=; i<=n; i++) b[i]=read();
for(register int i=; i<=n; i++) a[i]=(a[i]%b[i]+b[i])%b[i];
long long tot=, tmp;
for(register int i=; i<=n; i++) tot*=b[i];
for(register int i=; i<=n; i++) m[i]=tot/b[i];
for(register int i=; i<=n; i++) ex_gcd(m[i], b[i], t[i], tmp),t[i]=(t[i]%b[i]+b[i])%b[i];
long long ans=;
for(register int i=; i<=n; i++) ans=(ans+mul(mul(a[i],m[i],tot),t[i],tot))%tot;
ans=(ans+tot)%tot;
printf("%lld\n", ans);
return ;
}
刚学懂中国剩余定理的可以来肝这个裸题。
[TJOI2009]猜数字的更多相关文章
- P3868 [TJOI2009]猜数字
[TJOI2009]猜数字 中国剩余定理 求解i=1 to n : x≡a[i] (mod b[i])的同余方程组 设 t= ∏i=1 to n b[i] 我们先求出 i=1 to n : x≡1 ( ...
- CRT【p3868】[TJOI2009]猜数字
Description 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n ...
- [Luogu3868] [TJOI2009]猜数字
题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...
- [TJOI2009]猜数字(洛谷 3868)
题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...
- [TJOI2009] 猜数字 - 中国剩余定理
现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意的i,n ...
- Luogu P3868 [TJOI2009]猜数字
题目链接 \(Click\) \(Here\) 中国剩余定理的板子.小心取模. #include <bits/stdc++.h> using namespace std; const in ...
- 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)
洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...
- 洛谷 P3868 [TJOI2009]猜数字
题意简述 给定\(a[1],a[2],\cdots,a[n]\) 和 \(b[1],b[2],\cdots,b[n]\),其中\(b\)中元素两两互素. 求最小的非负整数\(n\),满足对于任意的\( ...
- C语言猜数字游戏
猜数字游戏,各式各样的实现方式,我这边提供一个实现方式,希望可以帮到新手. 老程序猿就不要看了,黑呵呵 源代码1 include stdio.h include stdlib.h include ti ...
随机推荐
- servlet(二):Servlet的web.xml配置
<?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http:// ...
- Python中防止sql注入的方法详解
SQL注入是比较常见的网络攻击方式之一,它不是利用操作系统的BUG来实现攻击,而是针对程序员编程时的疏忽,通过SQL语句,实现无帐号登录,甚至篡改数据库.下面这篇文章主要给大家介绍了关于Python中 ...
- Kali Linux常用服务配置教程启动DHCP服务
Kali Linux常用服务配置教程启动DHCP服务 通过前面的介绍,DHCP服务就配置好了.接下来,用户就可以使用该服务器来获取IP地址了.下面将对前面配置的服务进行测试. 1.启动DHCP服务 如 ...
- webpack配置antd的按需加载
安装babel-plugin-import插件.下面方法二选一,都可以实现antd的按需加载. 一.配置webpack.config.js文件 { test: /.jsx?$/, exclude: / ...
- javascript事件之调整大小(resize)事件
当浏览器窗口被调整到一个新的高度或宽度时,就会触发resize事件. var EventUtil = { addHandler: function (element, type, handler) { ...
- Yii2 验证规则
验证器的使用方法: public function rules() { return [ [['email', 'password'], 'required'], ['password', 'stri ...
- Vue(二十五)打包后路径报错问题
1.修改 config - index.js 2.修改 build - utils.js
- 马昕璐 201771010118《面向对象程序设计(java)》第六周学习总结
第一部分:理论知识学习部分 1.继承 继承:用已有类来构建新类的一种机制.当定义了一个新类继承了一个类时,这个新类就继承了这个类的方法和域,同时在新类中添加新的方法和域以适应新的情况. 继承是Java ...
- shell变量的使用及输入输出
1.shell 中变量名可以由字母,数字,下划线组成,但数字不能作为变量名的第一个数字 2.通过赋值符合“=” 来定义一个变量的值 如 myname='zhangjunjie' #字符串类型,不解析 ...
- Winform 关闭按钮
问题:我希望树形导航目录窗体在打开一条记录后自动隐藏,然后再次点击主页面打开按钮的时候在自动显示,这样就能保证树形目录仍旧显示隐藏前的展开状态.这里遇到一个问题,就是点击窗体右上角的关闭按钮时,默认情 ...