题意:给定节点数n和所有节点的深度总和d,问能否构造出这样的二叉树。能,则输出“YES”,并且输出n-1个节点的父节点(节点1为根节点)。

题解:n个节点构成的二叉树中,完全(满)二叉树的深度总和最小,单链树(左/右偏数)的深度总和最大。若d在这个范围内,则一定能构造出来;否则一定构造不出来。

    1.初始构造一颗单链树,依次把底部的节点放入上面的层,直到满足深度总和为d

    2.若当前深度总和sum > d,则先拿掉底端节点。

      拿掉后,若sum依然比d大,就直接把底端节点放入有空位的最上层;

      拿掉后sum <= d,dif = d - sum。

        若dif >= 此时有空位的最上层深度,则深度为dif的层一定有空位,把底端节点放入该层,即可完成构造。

        否则,依然把底端节点放入有空位的最上层,修改后的sum依旧比d大,继续循环即可。

    3.退出循环后就完成了构造,获得了所求的树。

具体存储结构、表示方式和算法过程见代码(和注释):

 #include<cstdio>
#include<cstring>
using namespace std;
/*
9 21
YES
1 1 2 2 4 4 6 8
9 22
YES
1 1 2 2 4 6 6 7
*/
int layer[], num[]; //layer[i]先存第i+1个点所在层的深度,num[i]是深度为i的层里的节点数 int main() {
int t, n, d;
scanf("%d", &t);
while (t--) {
scanf("%d%d", &n, &d);
memset(num, , sizeof num);
int sum = n * (n - ) / , dep = , minn = ;
num[] = ; //0深度层只有一个根节点
for (int i = ; i <= n; i++) {
//i&(i - 1)的结果为把i二进制下最后一个1置0。i&(i - 1) == 0时,i为2的整数次幂
if ((i&(i - )) == )dep++; //第i+1层的第一个节点为2^i
minn += dep; //minn记录满二叉树时的深度总和 layer[i - ] = i - ; //单链树时,和为sum,layer[i]是第i+1个点所在层的深度
num[i - ] = ; //num[i]记录深度为i的层的节点总数
}
if (d<minn || d>sum) {
puts("NO");
continue;
}
puts("YES");
dep = ; //当前有空位的最上层的深度
for (int i = n - ; i > && sum > d; i--) {
sum -= i; //拿掉底端顶点
num[i]--;
if (sum > d) { //拿掉之后,sum仍然比d大时;直接放最上面
layer[i] = dep; //第i+1个点现在的深度为dep
sum += dep; if (++num[dep] == ( << dep))dep++; //若最上面的层满了,修改为下一层
}
else { //拿掉之后,sum<=d时
int dif = d - sum; //看差值对应的层是否有空位
if (dif >= dep) { //有空位,则直接放到深度等于差值的那一层,构造成功
layer[i] = dif;
sum += dif; //写出来更好理解
num[dif]++; //该层节点数++
break;
}
else { //无空位,只能放最上面dep层
layer[i] = dep;
sum += dep; //此时sum仍然 > d
if (++num[dep] == ( << dep))dep++; //若最上面的层满了,修改为下一层
}
}
}
//构造成功。layer[i]是原来单链树中深度为i的点(第i+1个点) 现在的深度,num[i]是第i层的节点总数
//现只用num中的信息求解;layer中的信息只是辅助理解,现在用来存最终答案(即第i个节点的父节点编号)
int id(), fid(); //当前节点编号,上一层首个节点的编号
for (int i = ; num[i]; i++) { // while(深度为i的层节点数不为0)
for (int j = ; j < num[i]; j++) {
//深度为i的层的第j个节点,在完全二叉树中的编号为(1<<i)+j,上一层首个节点编号为1<<(i - 1)
//layer[id++] = fid + ((1 << i) + j) / 2 - (1 << (i - 1)); 直接算这个式子会溢出
layer[id++] = fid + j / ; //简化后得出,也可以直接理解推出来
}
fid += num[i - ];
}
for (int i = ; i < n; i++)
printf("%d ", layer[i]);
printf("%d\n", layer[n]);
}
return ;
}

完全二叉树编号:

          1

    2            3

 4     5      6      7

8  9  10  11  12  13  14  15 

详细讲解Codeforces Round #624 (Div. 3) E. Construct the Binary Tree(构造二叉树)的更多相关文章

  1. 详细讲解Codeforces Round #624 (Div. 3) F. Moving Points

    题意:给定n个点的初始坐标x和速度v(保证n个点的初始坐标互不相同), d(i,j)是第i个和第j个点之间任意某个时刻的最小距离,求出n个点中任意一对点的d(i,j)的总和. 题解:可以理解,两个点中 ...

  2. Codeforces Round #624 (Div. 3)(题解)

    Codeforces Round #624 (Div.3) 题目地址:https://codeforces.ml/contest/1311 B题:WeirdSort 题意:给出含有n个元素的数组a,和 ...

  3. Codeforces Round #624 (Div. 3) F. Moving Points 题解

    第一次写博客 ,请多指教! 翻了翻前面的题解发现都是用树状数组来做,这里更新一个 线段树+离散化的做法: 其实这道题是没有必要用线段树的,树状数组就能够解决.但是个人感觉把线段树用熟了会比树状数组更有 ...

  4. Codeforces Round #624 (Div. 3) C. Perform the Combo(前缀和)

    You want to perform the combo on your opponent in one popular fighting game. The combo is the string ...

  5. Codeforces Round #624 (Div. 3)

    A.题意:通过加奇数减偶数的操作从a到b最少需要几步 签到题 #include <algorithm> #include <iostream> #include <cst ...

  6. Codeforces Round #624 (Div. 3) B. WeirdSort(排序)

    output standard output You are given an array aa of length nn . You are also given a set of distinct ...

  7. Codeforces Round #624 (Div. 3) D. Three Integers

    You are given three integers a≤b≤ca≤b≤c . In one move, you can add +1+1 or −1−1 to any of these inte ...

  8. Codeforces Round #624 (Div. 3) A. Add Odd or Subtract Even(水题)

    You are given two positive integers aa and bb . In one move, you can change aa in the following way: ...

  9. Codeforces Round #624 (Div. 3) F

    题意: 给出n的质点,带着初位置和速度: 如果中途两点可以相遇dis(i,j)=0: 如果不可以相遇,mindis(i,j): 求n个点的两两质点最小dis(i,j)之和 思路: 因为当初位置x和速度 ...

随机推荐

  1. 使用整体模型模板辅助器 Using Whole-Model Templated Helpers 模板辅助器方法 精通ASP.NET MVC 5

    怎么会

  2. SpringBoot与缓存

    一.Spring Boot与缓存. JSR-107.Spring缓存抽象.整合Redis 一.JSR107 Java Caching定义了5个核心接口,分别是CachingProvider, Cach ...

  3. Springboot整合Redis入门完整篇,零基础入门教学教程

    记录一次简易集成Redis缓存 自定义Redisconfig配置 自定义序列化操作 加深印像 整合前提工具环境准备: 1.redis官网 https://redis.io/download 下载安装r ...

  4. GitHub Top 微信小程序——在家中憋了几天写点代码吧

    GitHub Top 本项目为 GitHub 热点项目微信小程序客户端,首页仅推荐一个热点项目,这个项目往往是社会热门事件所催生的一个项目,如 996.ICU.wuhan2020,所推荐项目标准为:积 ...

  5. Day9-Python3基础-多线程、多进程

    1.进程.与线程区别 2.python GIL全局解释器锁 3.线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 Que ...

  6. centos MySQL安装与卸载

    1.配置YUM源 在MySQL官网中下载YUM源rpm安装包:https://dev.mysql.com/downloads/repo/yum/ wget http://dev.mysql.com/g ...

  7. Spring注解开发系列Ⅸ --- 异步请求

    一. Servlet中的异步请求 在Servlet 3.0之前,Servlet采用Thread-Per-Request的方式处理请求,即每一次Http请求都由某一个线程从头到尾负责处理.如果要处理一些 ...

  8. qt creator源码全方面分析(2-1)

    目录 coding-style.html 提交代码 二进制兼容性和源代码兼容性 代码构造 格式化 利用标识符 空格 大括号 圆括号 换行符 声明 命名空间 模式与实践 命名空间 传递文件名 插件扩展点 ...

  9. 表达式属性(C#6.0和C#7.0

    从C#6开始,只读属性可简写为表达式属性.它使用双箭头替换了花括号,get访问器和return关键字. 例如: decimal CurrentPrice,sharedOwned; public dec ...

  10. 目标检测之RCNN,fast RCNN,faster RCNN

    RCNN: 候选区生成(Selective Search). 分割成2000左右的候选小区域 合并规则:颜色.纹理相近,尺度均匀,合并后形状规则 特征提取. 归一候选区尺寸为227×227,归一方法. ...