bzoj4765: 普通计算姬 (分块 && BIT)
最近一直在刷分块啊
似乎感觉分块和BIT是超级棒的搭档啊
这道题首先用dfs预处理一下
得到每一个sum值
此时查询是O(1)的 (前缀和乱搞什么的
但是修改需要O(n) (需要修改该节点所有祖先的sum
复杂度就爆了呀
此时考虑分块优化
似乎弹飞绵羊也是这样思考得出分块做法的
首先分成 √n 块
sum[i]记录第i块的sum和
中间的块直接用sum数组处理 两边用树状数组暴力求
这样查询就是O(√n)的 (其实有一些常数的... 就当是 √n 好了)
修改的话在dfs时用f[i][j]表示第j个点对于第i块的贡献 (需要算几次什么的
然后直接修改块就好了 复杂度也是O (√n) 的
下面是代码
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
#define isdigit(x) (x >= '0' && x <= '9')
#define lowbit(x) (x & (-x))
typedef unsigned long long ll;
const int N = 1e5 + ;
const int M = ; int n, root, cnt, sz, tot;
int d[N], b[N], f[M][N], ct[N], L[N], p[N];
ll s[N], c[N];
vector < int > E[N]; inline void read(int &ans) {
ans = ;
register int res = ;
static char buf = getchar();
for (; !isdigit(buf); buf = getchar())
if (buf == '-') res = -;
for (; isdigit(buf); buf = getchar())
ans = ans * + buf - '';
ans *= res;
} inline void addEdge(int u ,int v) {
E[u].push_back(v);
E[v].push_back(u);
} inline void add(int x, ll v) {
while (x <= n) {
c[x] += v;
x += lowbit(x);
}
} inline ll query(int x) {
ll ans = ;
while (x > ) {
ans += c[x];
x -= lowbit(x);
}
return ans;
} ll dfs(int x, int fa) {
ll sum = d[x]; p[x] = ++tot;
ct[b[x]]++; add(tot, d[x]);
for (int i = ; i <= cnt; i++) f[i][x] += ct[i];
for (int i = ; i < E[x].size(); i++) {
int u = E[x][i];
if (u == fa) continue;
sum += dfs(u, x);
}
ct[b[x]]--; L[x] = tot;
s[b[x]] += sum;
return sum;
} inline void modify(int u, int v) {
add(p[u], v - d[u]);
for (int i = ; i <= cnt; i++)
s[i] += (v - d[u]) * 1ll * f[i][u];
d[u] = v;
} inline ll query(int l ,int r) {
ll ans = ;
if (b[l] == b[r]) {
for (int i = l; i <= r; i++)
ans += query(L[i]) - query(p[i] - );
return ans;
}
for (int i = b[l] + ; i < b[r]; i++)
ans += s[i];
for (int i = l; i <= b[l] * sz; i++)
ans += query(L[i]) - query(p[i] - );
for (int i = (b[r] - ) * sz + ; i <= r; i++)
ans += query(L[i]) - query(p[i] - );
return ans;
} int main() {
int m;
read(n); read(m);
sz = sqrt(n);
for (int i = ; i <= n; i++) {
read(d[i]);
b[i] = (i - ) / sz + ;
}
cnt = b[n];
for (int i = ; i <= n; i++) {
int u, v;
read(u); read(v);
if (!u) root = v;
else addEdge(u, v);
}
dfs(root, );
while (m--) {
int op, u, v;
read(op); read(u); read(v);
if (op == )
modify(u, v);
else
printf("%llu\n", query(u, v));
}
return ;
}
bzoj4765: 普通计算姬 (分块 && BIT)的更多相关文章
- [BZOJ4765]普通计算姬(分块+树状数组)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 1725 Solved: 376[Submit][Status][Discus ...
- [bzoj4765]普通计算姬——分块
Brief Description 给定一棵n个节点的带权树,节点编号为1到n,以root为根,设sum[p]表示以点p为根的这棵子树中所有节点的权 值和.支持下列两种操作: 1 给定两个整数u,v, ...
- BZOJ4765: 普通计算姬
BZOJ4765: 普通计算姬 题目描述 传送门 题目分析 求的和非常奇怪,不具有连续性,所有上树的数据结构全死了. 考虑分块,思考对于一段连续的询问区间可以直接询问整块,零散块可以在树上dfs序暴力 ...
- 2018.06.30 BZOJ4765: 普通计算姬(dfs序+分块+树状数组)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MB Description "奋战三星期,造台计算机".小G响应号召,花了三小时 ...
- [bzoj4765]普通计算姬(分块+树状数组+DFS序)
题意 给定一棵n个节点的带权树,节点编号为1到n,以root为根,设sum[p]表示以点p为根的这棵子树中所有节点的权值和.计算姬支持下列两种操作: 1 给定两个整数u,v,修改点u的权值为v. 2 ...
- BZOJ 4765 普通计算姬 (分块 + BIT)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 1547 Solved: 329[Submit][Status][Discus ...
- BZOJ4765 普通计算姬(分块+树状数组)
对节点按编号分块.设f[i][j]为修改j号点对第i块的影响,计算f[i][]时dfs一遍即可.记录每一整块的sum.修改时对每一块直接更新sum,同时用dfs序上的树状数组维护子树和.查询时累加整块 ...
- BZOJ 4765: 普通计算姬 [分块 树状数组 DFS序]
传送门 题意: 一棵树,支持单点修改和询问以$[l,r]$为根的子树的权值和的和 只有我这种不会分块的沙茶不会做这道题吗? 说一点总结: 子树和当然上$dfs$序了,询问原序列一段区间所有子树和,对原 ...
- BZOJ 4765: 普通计算姬 (分块+树状数组)
传送门 解题思路 树上的分块题,,对于修改操作,每次修改只会对他父亲到根这条链上的元素有影响:对于查询操作,每次查询[l,r]内所有元素的子树,所以就考虑dfn序,进标记一次,出标记一次,然后子树就是 ...
随机推荐
- JMeter-查找元素
参考文档:https://jmeter.apache.org/usermanual/hints_and_tips.html 有时很难使用变量或包含某个URL或参数的方法在“测试计划”树和元素中找到. ...
- JAVA是否最适合企业应用开发?
· JAVA是否最适合企业应用开发? 当我刚入行做程序员的时候,那是在01-02年,铺天盖地的都是java,j2ee,公司也使用java作为开发语言,我也就随大流加入javaer阵营. 从那时起,各种 ...
- MySQL 8 通用二进制发行版安装
安装前的一些说明: 检查平台兼容性: https://www.mysql.com/support/supportedplatforms/database.html 如果是在RedHat7版本安装的话, ...
- java学习笔记之集合—ArrayList源码解析
1.ArrayList简介 ArrayList是一个数组队列,与java中的数组的容量固定不同,它可以动态的实现容量的增涨.所以ArrayList也叫动态数组.当我们知道有多少个数据元素的时候,我们用 ...
- k8s部署k8s-dashboard(v2.0.0-rc5)
部署dashboard 版本问题 dashboard版本更新换代很快,而且每个版本对应的k8s版本都有可能不同,所以第一步要确定版本对应关系. 查看页面可以确认版本对应关系 版本对应不上可能出现很多语 ...
- Mysql中FIND_IN_SET()和IN区别简析
来源:http://www.jb51.net/article/125744.htm 测试SQL: CREATE TABLE `test` ( `id` int(8) NOT NULL auto_inc ...
- 配置hosts快速访问GitHub
经常要clone github中的一些项目,无奈如果不爬梯子的话速度实在是龟速,经常1k/s,于是搜了下解决方法,改HOSTS大法.Windows下在C:/Windows/system32/drive ...
- Qt Gui 第一章~第二章
一.Qt启动 qmake -project; 创建xxx.pro qmake xxx.pro; 生成makefile文件 make:构建该程序,生成可执行文件 运行程序:windows:xxx:mac ...
- PHPstorm配置xdebug问题小记
安装的是符合自己环境的xdebug,因为是按照xdebug官网的步骤安装的:安装什么版本检测地址:https://xdebug.org/wizard.php,安装操作复制phpinfo()内容之后点击 ...
- DataGrid 的DataSource重新加载数据
DataGrid 的DataSource重新加载数据,若直接重新给DataSource赋值是没有效果的,若只是修改原有数据中的单个值,此方法有效,但是针对完全不一样的数据直接重新赋值的方式是无效的,此 ...