一、前言

  最近在研究java.util.concurrent包下的一些的常用类,之前写了AQSReentrantLockArrayBlockingQueue以及LinkedBlockingQueue的相关博客,今天这篇博客就来写一写并发包下的另一个常用类——CountDownLatch。这里首先要说明一点,CountDownLatch是基于AQS实现的,AQS才是真正实现了线程同步的组件,CountDownLatch只是它的使用者,所以如果想要学习CountDownLatch,请一定先要弄懂AQS的实现原理。我以下的描述均建立在已经了解AQS的基础之上。我之前写过一篇AQS实现原理的分析博客,感兴趣可以看一看:并发——抽象队列同步器AQS的实现原理

二、正文

2.1 抽象队列同步器AQS

  在说CountDownLatch前,必须要先提一下AQSAQS全称抽象队列同步器(AbstractQuenedSynchronizer),它是一个可以用来实现线程同步的基础框架。当然,它不是我们理解的Spring这种框架,它是一个类,类名就是AbstractQuenedSynchronizer,如果我们想要实现一个能够完成线程同步的锁或者类似的同步组件,就可以在使用AQS来实现,因为它封装了线程同步的方式,我们在自己的类中使用它,就可以很方便的实现一个我们自己的锁。

  AQS的实现相对复杂,无法通过短短的几句话将其说清楚,我之前专门写过一篇分析AQS实现原理的博客:并发——抽象队列同步器AQS的实现原理

  在阅读下面的内容前,请一定要先学习AQS的实现原理,因为CountDownLatch的实现非常简单,完全就是依赖于AQS的,所以我以下的描述均建立在已经理解AQS的基础之上。可以阅读上面推荐博客,也可以自己去查阅相关资料。

2.2 CountDownLatch的实现原理

  既然已经开始学习CountDownLatch的实现原理了,那一定已经知道了它的作用,我这里就不详细展示了,简单介绍一下:CountDownLatch的被称为门栓,可以将它看成是门上的锁,它会给门上多把锁,只有每一把锁都解开,才能通过。对于线程来说,CountDownLatch会阻塞线程的运行,只有当CountDownLatc内部记录的值减小为0,线程才能继续向前执行。

  CountDownLatch底层通过AQS实现,AQS的一般使用方式就是以内部类的形式继承它,CountDownLatch就是这么使用它的。在CountDownLatch内部有一个内部类Sync,继承自AQS,并重写了AQS加锁解锁的方法,并通过Sync的对象,调用AQS的方法,阻塞线程的运行。我们知道,创建一个CountDownLatch对象时,需要传入一个整数值count,只有当count被减小为0时线程才能通过await方法,否则将被await阻塞。这里实际上是这样的:当线程运行到await方法时,需要去获取锁(锁由AQS实现),若count不为0,则线程就会获取锁失败,被阻塞;若count为0,则就能顺利通过CountDownLatch是一次性的,因为没有方法可以增加count的值,也就是说,一旦count被减小为0,则之后就一直是0了,也就再也不能阻塞线程了。下面我们就从源码的角度来分析CountDownLatch

2.3 CountDownLatch的内部类

  前面我们说过,CountDownLatch内部定义了一个内部类Sync,继承自AQS,通过这个内部类来实现线程阻塞,下面我们就来看一看这个内部类的实现:

private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L; /** 构造方法,接收count值,只有count减小为0时,线程才不会被await方法阻塞 */
Sync(int count) {
// CountDownLatch利用AQS的方式就是直接让count作为AQS的同步变量state
// 所以直接用state记录count值
setState(count);
} /** 获取当前的count值 */
int getCount() {
return getState();
} /**
* 这是AQS的模板方法acquireShared、acquireSharedInterruptibly等方法内部将会调用的方法,
* 由子类实现,这个方法的作用是尝试获取一次共享锁,对于AQS来说,
* 此方法返回值大于等于0,表示获取共享锁成功,反之则获取共享锁失败,
* 而在这里,实际上就是判断count是否等于0,线程能否向下运行
*/
protected int tryAcquireShared(int acquires) {
// 此处判断state的值是否为0,也就是判断count是否为0,
// 若count为0,返回1,表示获取锁成功,此时线程将不会阻塞,正常运行
// 若count不为0,则返回-1,表示获取锁失败,线程将会被阻塞
// 从这里我们已经可以看出CountDownLatch的实现方式了
return (getState() == 0) ? 1 : -1;
} /**
* 此方法的作用是用来是否AQS的共享锁,返回true表示释放成功,反之则失败
* 此方法将会在AQS的模板方法releaseShared中被调用,
* 在CountDownLatch中,这个方法用来减小count值
*/
protected boolean tryReleaseShared(int releases) {
// 使用死循环不断尝试释放锁
for (;;) {
// 首先获取当前state的值,也就是count值
int c = getState();
// 若count值已经等于0,则不能继续减小了,于是直接返回false
// 为什么返回的是false,因为等于0表示之前等待的那些线程已经被唤醒了,
// 若返回true,AQS会尝试唤醒线程,若返回false,则直接结束,所以
// 在没有线程等待的情况下,返回false直接结束是正确的
if (c == 0)
return false;
// 若count不等于0,则将其-1
int nextc = c-1;
// compareAndSetState的作用是将count值从c,修改为新的nextc
// 此方法基于CAS实现,保证了操作的原子性
if (compareAndSetState(c, nextc))
// 若nextc == 0,则返回的是true,表示已经没有锁了,线程可以运行了,
// 若nextc > 0,则表示线程还需要继续阻塞,此处将返回false
return nextc == 0;
}
}
}

  可以看到,内部类Sync的实现非常简单,它只实现了AQS中的两个方法,即tryAcquireShared以及tryReleaseShared,这两个方法是AQS提供的使用共享锁的接口。这也就表明,CountDownLatch实际上是一种共享锁机制,即锁可以同时被多个线程获取,这个不难理解,因为一旦count被减小为0,则所有线程通过await方法时,都能够顺利通过,不会因为获取不到锁而阻塞。而且从上面的实现中我们可以看到,Sync直接将count值作为AQSstate的值,只有state的值为0,线程才能获取锁,也就是获得执行权限。

2.4 CountDownLatch的成员变量和构造方法

  下面来看一看CountDownLatch的属性和构造方法:

/**
* 只有一个成员变量,就是内部类Sync的一个对象,通过此对象调用AQS的方法,实现线程阻塞和唤醒
*/
private final Sync sync; /**
* 只有一个构造方法,接收一个count值
*/
public CountDownLatch(int count) {
// count值不能小于0
if (count < 0) throw new IllegalArgumentException("count < 0");
// 直接创建一个Sync对象,并传入count值,Sync内部将会执行setState(count)
this.sync = new Sync(count);
}

2.5 await方法分析

  CountDownLatch类最最核心的两个方法就是await以及ountDown,我们先来看一看await方法的实现:

// 此方法用来让当前线程阻塞,直到count减小为0才恢复执行
public void await() throws InterruptedException {
// 这里直接调用sync的acquireSharedInterruptibly方法,这个方法定义在AQS中
// 方法的作用是尝试获取共享锁,若获取失败,则线程将会被加入到AQS的同步队列中等待
// 直到获取成功为止。且这个方法是会响应中断的,线程在阻塞的过程中,若被其他线程中断,
// 则此方法会通过抛出异常的方式结束等待。
sync.acquireSharedInterruptibly(1);
}

  await的实现异常简单,只有短短一行代码,调用了AQS中已经封装好的方法。这就是AQS的好处,AQS已经实现了线程的阻塞和唤醒机制,将实现的复杂性隐藏,而其他类只需要简单的使用它即可。为了方便理解,我们还是来看看acquireSharedInterruptibly方法吧:

/** 此方法是AQS中提供的一个模板方法,用以获取共享锁,并且会响应中断 */
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
// 首先判断当前线程释放被中断,若被中断,则直接抛出异常结束
if (Thread.interrupted())
throw new InterruptedException(); // 调用tryAcquireShared方法尝试获取锁,这个方法被Sycn类重写了,
// 若count == 0,则这个方法会返回1,表示获取锁成功,则这里会直接返回,线程不会被阻塞
// 若count < 0,将会执行下面的doAcquireSharedInterruptibly方法,
// 此处请去查看Sync中tryAcquireShared方法的实现
if (tryAcquireShared(arg) < 0)
// 下面这个方法的作用是,线程获取锁失败,将会加入到AQS的同步队列中阻塞等待,
// 直到成功获取到锁,而此处成功获取到锁的条件就是count == 0,若当前线程在等待的过程中,
// 成功地获取了锁,则它会继续唤醒在它后面等待的线程,也尝试获取锁,
// 这也就是说,只要count == 0了,则所有被阻塞的线程都能恢复运行
doAcquireSharedInterruptibly(arg);
}

  相信看到这里,对CountDownLatch的实现原理已经有一个比较清晰的理解了。CountDownLatch的实现完全就是依赖于AQS的,所有再次提醒,如果以上内容理解不了,请先去学习AQS

2.6 countDown方法分析

  下面我们来分析CountDownLatch中另一个核心的方法——countDown

/**
* 此方法的作用就是将count的值-1,如果count等于0了,就唤醒等待的线程
*/
public void countDown() {
// 这里直接调用sync的releaseShared方法,这个方法的实现在AQS中,也是AQS提供的模板方法,
// 这个方法的作用是当前线程释放锁,若释放失败,返回false,若释放成功,则返回false,
// 若锁被释放成功,则当前线程会唤醒AQS同步队列中第一个被阻塞的线程,让他尝试获取锁
// 对于CountDownLatch来说,释放锁实际上就是让count - 1,只有当count被减小为0,
// 锁才是真正被释放,线程才能继续向下运行
sync.releaseShared(1);
}

  为了方便理解,我们还是来看一看AQSreleaseShared方法的实现:

public final boolean releaseShared(int arg) {
// 调用tryReleaseShared尝试释放锁,这个方法已经由Sycn重写,请回顾上面对此方法的分析
// 若tryReleaseShared返回true,表示count经过这次释放后,等于0了,于是执行doReleaseShared
if (tryReleaseShared(arg)) {
// 这个方法的作用是唤醒AQS的同步队列中,正在等待的第一个线程
// 而我们分析acquireSharedInterruptibly方法时已经说过,
// 若一个线程被唤醒,检测到count == 0,会继续唤醒下一个等待的线程
// 也就是说,这个方法的作用是,在count == 0时,唤醒所有等待的线程
doReleaseShared();
return true;
}
return false;
}

三、总结

  如果直接去看CountDownLatch的源码会发现,它的实现真的非常简单,包括注释在内,总共300行代码,除去注释,连100行代码都不到。因为它所作的工作,除了重写AQS的两个方法外,其余的基本上就是调用AQS提供的模板方法而已。所以,理解CountDownLatch的过程,实际上是理解AQS的过程,只要理解了AQS,看懂CountDownLatch的原理,不需要5分钟。AQS真的是Java并发中非常重要的一个组件,很多类都是基于它实现的,比如还有ReentrantLock,同时AQS也是面试中的常考点,所以一定要好好研究。最后再次推荐我之前编写的有关AQS的源码分析博客:并发——抽象队列同步器AQS的实现原理

四、参考

  • JDK1.8源码

并发——深入分析CountDownLatch的实现原理的更多相关文章

  1. Java并发—–深入分析synchronized的实现原理

    记得刚刚开始学习Java的时候,一遇到多线程情况就是synchronized,相对于当时的我们来说synchronized是这么的神奇而又强大,那个时候我们赋予它一个名字“同步”,也成为了我们解决多线 ...

  2. 并发——深入分析ThreadLocal的实现原理

    一.前言   这篇博客来分析一下ThreadLocal的实现原理以及常见问题,由于现在时间比较晚了,我就不废话了,直接进入正题. 二.正文 2.1 ThreadLocal是什么   在讲实现原理之前, ...

  3. 聊聊并发(一)深入分析Volatile的实现原理

    本文属于作者原创,原文发表于InfoQ:http://www.infoq.com/cn/articles/ftf-java-volatile 引言 在多线程并发编程中synchronized和Vola ...

  4. 并发编程学习笔记(9)----AQS的共享模式源码分析及CountDownLatch使用及原理

    1. AQS共享模式 前面已经说过了AQS的原理及独享模式的源码分析,今天就来学习共享模式下的AQS的几个接口的源码. 首先还是从顶级接口acquireShared()方法入手: public fin ...

  5. (转载)java高并发:CAS无锁原理及广泛应用

    java高并发:CAS无锁原理及广泛应用   版权声明:本文为博主原创文章,未经博主允许不得转载,转载请注明出处. 博主博客地址是 http://blog.csdn.net/liubenlong007 ...

  6. Java并发机制的底层实现原理之volatile应用,初学者误看!

    volatile的介绍: Java代码在编译后会变成Java字节码,字节码被类加载器加载到JVM里,JVM执行字节码,最终需要转化为汇编指令在CPU上执行,Java中所使用的并发机制依赖于JVM的实现 ...

  7. Java 线程同步组件 CountDownLatch 与 CyclicBarrier 原理分析

    1.简介 在分析完AbstractQueuedSynchronizer(以下简称 AQS)和ReentrantLock的原理后,本文将分析 java.util.concurrent 包下的两个线程同步 ...

  8. 《Java并发编程的艺术》Java并发机制的底层实现原理(二)

    Java并发机制的底层实现原理 1.volatile volatile相当于轻量级的synchronized,在并发编程中保证数据的可见性,使用 valotile 修饰的变量,其内存模型会增加一个 L ...

  9. Java并发编程笔记之ConcurrentHashMap原理探究

    在多线程环境下,使用HashMap进行put操作时存在丢失数据的情况,为了避免这种bug的隐患,强烈建议使用ConcurrentHashMap代替HashMap. HashTable是一个线程安全的类 ...

随机推荐

  1. 关于OSS不再维护的一些讨论

    FUSE for macOS 将不再维护 Fuse 是一款针对Mac OS的文件系统所开发的一款开源软件. 用于MacOS的FUSE软件包提供了多个API,用于为OS X 10.9至macOS 10. ...

  2. 02-influxdb执行命令方式

    influxdb执行命令方式 1. 三种操作方法 InfluxDB提供三种操作方式: 1)客户端命令行方式 2)HTTP API接口 3)各语言API库 2. 客户端命令行方式 查看influxdb占 ...

  3. 【摩天大楼平地起】基础篇 09 简述N种查找算法

    引言 在开始之前首先可以先思考一下假如没有查找算法会是什么情况?所有数据结构都需要全部遍历一遍,每次都一遍又一遍的查,从本质而言查找算法就是为了提高效率. 经过前人一代又一代的努力,目前的查找算法大致 ...

  4. turtle学习笔记

    1.turtle的绘图窗体 turtle.setup(width, height, startx,starty) - setup()设置窗体大小及位置- 4个参数中后两个可选(后两个省略时默认窗口在屏 ...

  5. chrome DevTools 里面 css样式里面 勾上 :hover 会将鼠标移上的效果一直保持,技巧:要在鼠标上的 div上 勾 :hover

    chrome DevTools 里面 css样式里面 勾上 :hover 会将鼠标移上的效果一直保持,技巧:要在鼠标上的 div上 勾 :hover

  6. Java 并发原子操作类(转)

    转自:https://www.jianshu.com/p/3632a0f9f083 线程不安全的高并发实现 客户端模拟执行 5000 个任务,线程数量是 200,每个线程执行一次,就将 count 计 ...

  7. 金融和IT的区别

    在进入金融圈之前, 我写了十五年的代码, 在San Francisco Bay Area(也就是中国人所说的硅谷)工作过两三年. 去年因为Fintech和香港.NET俱乐部的缘故, 我接触了私人银行和 ...

  8. 原来 CPU 为程序性能优化做了这么多

    本文主要来学习内存屏障和 CPU 缓存知识,以便于我们去了解 CPU 对程序性能优化做了哪些努力. 首先来看下 CPU 缓存: CPU 缓存 CPU 缓存是为了提高程序运行的性能,CPU 在很多处理上 ...

  9. Cesium 源码笔记[1] Viewer模块实例化的大致过程

    我原本想写日记的,但是不太现实. 源码下载 源码可以从源码包和发行包中的Source目录中获取. Cesium的模块化机制从1.63版本开始,由原来的RequireJs变为ES6.但有可能是原先设计耦 ...

  10. GitHub 热点速览 Vol.13:近 40k star 计算机论文项目再霸 GitHub Trending 榜

    作者:HelloGitHub-小鱼干 摘要:"潮流是个轮回",这句话用来形容上周的 GitHub Trending 最贴切不过.无论是已经获得近 40k 的高星项目 Papers ...