python 验证码处理
一、
灰度处理,就是把彩色的验证码图片转为灰色的图片。
二值化,是将图片处理为只有黑白两色的图片,利于后面的图像处理和识别
# 自适应阀值二值化
def _get_dynamic_binary_image(filedir, img_name):
filename = './out_img/' + img_name.split('.')[0] + '-binary.jpg'
img_name = filedir + '/' + img_name
print('.....' + img_name)
im =dz.imread(img_name)
im = dz.cvtColor(im,dz.COLOR_BGR2GRAY) #灰值化
# 二值化
th1 = dz.adaptiveThreshold(im, 255, dz.ADAPTIVE_THRESH_GAUSSIAN_C, dz.THRESH_BINARY, 21, 1) dz.imwrite(filename,th1)
return th1
二、去除边框
# 去除边框
def clear_border(img,img_name):
filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
h, w = img.shape[:2]
for y in range(0, w):
for x in range(0, h):
if y < 2 or y > w - 2:
img[x, y] = 255
if x < 2 or x > h -2:
img[x, y] = 255 cv2.imwrite(filename,img)
return img
在用OpenCV时,图片的矩阵点是反的,就是长和宽是颠倒的
三、降噪
降噪是验证码处理中比较重要的一个步骤,我这里使用了点降噪和线降噪,,,只能去除细的干扰线
# 干扰线降噪
def interference_line(img, img_name):
filename = './out_img/' + img_name.split('.')[0] + '-interferenceline.jpg'
h, w = img.shape[:2]
# !!opencv矩阵点是反的
# img[1,2] 1:图片的高度,2:图片的宽度
for y in range(1, w - 1):
for x in range(1, h - 1):
count = 0
if img[x, y - 1] > 245:
count = count + 1
if img[x, y + 1] > 245:
count = count + 1
if img[x - 1, y] > 245:
count = count + 1
if img[x + 1, y] > 245:
count = count + 1
if count > 2:
img[x, y] = 255
cv2.imwrite(filename,img)
return img
# 点降噪
def interference_point(img,img_name, x = 0, y = 0):
"""
9邻域框,以当前点为中心的田字框,黑点个数
:param x:
:param y:
:return:
"""
filename = './out_img/' + img_name.split('.')[0] + '-interferencePoint.jpg'
# todo 判断图片的长宽度下限
cur_pixel = img[x,y]# 当前像素点的值
height,width = img.shape[:2] for y in range(0, width - 1):
for x in range(0, height - 1):
if y == 0: # 第一行
if x == 0: # 左上顶点,4邻域
# 中心点旁边3个点
sum = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 2 * 245:
img[x, y] = 0
elif x == height - 1: # 右上顶点
sum = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1])
if sum <= 2 * 245:
img[x, y] = 0
else: # 最上非顶点,6邻域
sum = int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
elif y == width - 1: # 最下面一行
if x == 0: # 左下顶点
# 中心点旁边3个点
sum = int(cur_pixel) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x, y - 1])
if sum <= 2 * 245:
img[x, y] = 0
elif x == height - 1: # 右下顶点
sum = int(cur_pixel) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y - 1]) if sum <= 2 * 245:
img[x, y] = 0
else: # 最下非顶点,6邻域
sum = int(cur_pixel) \
+ int(img[x - 1, y]) \
+ int(img[x + 1, y]) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x + 1, y - 1])
if sum <= 3 * 245:
img[x, y] = 0
else: # y不在边界
if x == 0: # 左边非顶点
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1]) if sum <= 3 * 245:
img[x, y] = 0
elif x == height - 1: # 右边非顶点
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) if sum <= 3 * 245:
img[x, y] = 0
else: # 具备9领域条件的
sum = int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 4 * 245:
img[x, y] = 0
cv2.imwrite(filename,img)
return img
五、字符切割
def cfs(im,x_fd,y_fd):
'''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
''' # print('**********') xaxis=[]
yaxis=[]
visited =set()
q = Queue()
q.put((x_fd, y_fd))
visited.add((x_fd, y_fd))
offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域 while not q.empty():
x,y=q.get() for xoffset,yoffset in offsets:
x_neighbor,y_neighbor = x+xoffset,y+yoffset if (x_neighbor,y_neighbor) in (visited):
continue # 已经访问过了 visited.add((x_neighbor, y_neighbor)) try:
if im[x_neighbor, y_neighbor] == 0:
xaxis.append(x_neighbor)
yaxis.append(y_neighbor)
q.put((x_neighbor,y_neighbor)) except IndexError:
pass
# print(xaxis)
if (len(xaxis) == 0 | len(yaxis) == 0):
xmax = x_fd + 1
xmin = x_fd
ymax = y_fd + 1
ymin = y_fd else:
xmax = max(xaxis)
xmin = min(xaxis)
ymax = max(yaxis)
ymin = min(yaxis)
#ymin,ymax=sort(yaxis) return ymax,ymin,xmax,xmin def detectFgPix(im,xmax):
'''搜索区块起点
''' h,w = im.shape[:2]
for y_fd in range(xmax+1,w):
for x_fd in range(h):
if im[x_fd,y_fd] == 0:
return x_fd,y_fd def CFS(im):
'''切割字符位置
''' zoneL=[]#各区块长度L列表
zoneWB=[]#各区块的X轴[起始,终点]列表
zoneHB=[]#各区块的Y轴[起始,终点]列表 xmax=0#上一区块结束黑点横坐标,这里是初始化
for i in range(10): try:
x_fd,y_fd = detectFgPix(im,xmax)
# print(y_fd,x_fd)
xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
L = xmax - xmin
H = ymax - ymin
zoneL.append(L)
zoneWB.append([xmin,xmax])
zoneHB.append([ymin,ymax]) except TypeError:
return zoneL,zoneWB,zoneHB return zoneL,zoneWB,zoneHB
切割粘连字符代码
# 切割的位置
im_position = CFS(im) maxL = max(im_position[0])
minL = min(im_position[0]) # 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割
if(maxL > minL + minL * 0.7):
maxL_index = im_position[0].index(maxL)
minL_index = im_position[0].index(minL)
# 设置字符的宽度
im_position[0][maxL_index] = maxL // 2
im_position[0].insert(maxL_index + 1, maxL // 2)
# 设置字符X轴[起始,终点]位置
im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2
im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])
# 设置字符的Y轴[起始,终点]位置
im_position[2].insert(maxL_index + 1, im_position[2][maxL_index]) # 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以
cutting_img(im,im_position,img_name,1,1
切割粘连字符代码
def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
filename = './out_img/' + img.split('.')[0]
# 识别出的字符个数
im_number = len(im_position[1])
# 切割字符
for i in range(im_number):
im_start_X = im_position[1][i][0] - xoffset
im_end_X = im_position[1][i][1] + xoffset
im_start_Y = im_position[2][i][0] - yoffset
im_end_Y = im_position[2][i][1] + yoffset
cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
cv2.imwrite(filename + '-cutting-' + str(i) + '.jpg',cropped)
六、识别:
识别用的是typesseract库,主要识别一行字符和单个字符时的参数设置,识别中英文的参数设置,代码很简单就一行,我这里大多是filter文件的操作
# 识别验证码
cutting_img_num = 0
for file in os.listdir('./out_img'):
str_img = ''
if fnmatch(file, '%s-cutting-*.jpg' % img_name.split('.')[0]):
cutting_img_num += 1
for i in range(cutting_img_num):
try:
file = './out_img/%s-cutting-%s.jpg' % (img_name.split('.')[0], i)
# 识别字符
str_img = str_img + image_to_string(Image.open(file),lang = 'eng', config='-psm 10') #单个字符是10,一行文本是7
except Exception as err:
pass
print('切图:%s' % cutting_img_num)
print('识别为:%s' % str_img
python 验证码处理的更多相关文章
- Python验证码6位自动生成器
Python验证码6位自动生成器
- python验证码识别
关于利用python进行验证码识别的一些想法 用python加“验证码”为关键词在baidu里搜一下,可以找到很多关于验证码识别的文章.我大体看了一下,主要方法有几类:一类是通过对图片进行处 理,然后 ...
- Python 验证码识别-- tesserocr
Python 验证码识别-- tesserocr tesserocr 是 Python 的一个 OCR 识别库 ,但其实是对 tesseract 做的一 层 Python API 封装,所以它的核心是 ...
- 【转】Python验证码识别处理实例
原文出处: 林炳文(@林炳文Evankaka) 一.准备工作与代码实例 1.PIL.pytesser.tesseract (1)安装PIL:下载地址:http://www.pythonware.com ...
- Python 验证码识别(别干坏事哦...)
关于python验证码识别库,网上主要介绍的为pytesser及pytesseract,其实pytesser的安装有一点点麻烦,所以这里我不考虑,直接使用后一种库. python验证码识别库安装 要安 ...
- python 验证码 高阶验证
python 验证码 高阶验证 标签: 验证码python 2016-08-19 15:07 1267人阅读 评论(1) 收藏 举报 分类: 其他(33) 目录(?)[+] 字符型图片验证 ...
- Windows平台python验证码识别
参考: http://oatest.dragonbravo.com/Authenticate/SignIn?returnUrl=%2f http://drops.wooyun.org/tips/631 ...
- Python验证码识别处理实例(转载)
版权声明:本文为博主林炳文Evankaka原创文章,转载请注明出处http://blog.csdn.net/evankaka 一.准备工作与代码实例 1.PIL.pytesser.tesseract ...
- python 验证码
python写的验证码小程序 ##################验证码,数字+字母 import random check_code="" for i in range(6): ...
- Python验证码识别处理实例(转)
一.准备工作与代码实例 1.PIL.pytesser.tesseract (1)安装PIL:下载地址:http://www.pythonware.com/products/pil/(CSDN下载) 下 ...
随机推荐
- RF(三层封装设计)
一.用例分层思想 元素层:需要导入 Selenium2Library 库 包含所有的元素定位 流程层:需要导入 元素层.txt 资源 封装用例流程 案例层:需要导入 流程层.txt 资源 输出用例,传 ...
- 学习Vue第三节,事件修饰符stop、prevent、capture、self、once
事件修饰符: .stop 阻止冒泡 .prevent 阻止默认事件 .capture 添加事件侦听器时使用事件捕获模式 .self 只当事件在该元素本身(比如不是子元素)触发时触发回调 .once 事 ...
- java读源码 之 queue源码分析(PriorityQueue,附图)
今天要介绍的是基础容器类(为了与并发容器类区分开来而命名的名字)中的另一个成员--PriorityQueue,它的大名叫做优先级队列,想必即使没有用过也该有所耳闻吧,什么?没..没听过?emmm... ...
- search(10)- elastic4s-multi_match:多字段全文搜索
在全文搜索中我们常常会在多个字段中匹配同一个查询条件或者在不同的字段中匹配不同的条件.比如下面这个例子: GET /books/_search { "query": { " ...
- 折腾了一晚上的“equals”和“==”
最近在仿写美团这个项目的时候,遇到了一点关于字符串比较的问题,这里记录一下,避免以后再犯. 由于之前学c语言的时候,习惯性用“==”进行比较,初识Java,不知道有什么别的方法可以进行字符串比较,于是 ...
- C# 中 枚举Enum 一些转换的方法整理
工作中 经常遇到枚举 的一些转换 特别是获取枚举备注等 特地整理下 方法以后使用 public void TestMethod1() { TestEnumOne colorEnum = TestE ...
- 【Kafka】Consumer API
Consumer API Kafka官网文档给了基本格式 http://kafka.apachecn.org/10/javadoc/index.html?org/apache/kafka/client ...
- Spring JDBC 框架使用JdbcTemplate 类的一个实例
JDBC 框架概述 在使用普通的 JDBC 数据库时,就会很麻烦的写不必要的代码来处理异常,打开和关闭数据库连接等.但 Spring JDBC 框架负责所有的低层细节,从开始打开连接,准备和执行 SQ ...
- 自动化测试工具-Selenium IDE 教程一
引言:这里介绍的是谷歌浏览种的插件,安装教程这里不再描述,网上有很多, 使用教程不是特别多,所以特地花时间整理此篇内容: 一:打开插件,欢迎界面 启动IDE后,将显示一个欢迎对话框. 如果这是您第一次 ...
- Linux --登录用户显示-bash-4.2#解决办法
登录linux系统过后,发现显示的是-bash-4.2# 而不是root@主机名 + 路径的显示方式,发生这种情况的原因是根目录下缺失几个配置文件,从默认配置中拷贝过来就可以解决了: 1 cp /et ...