2019 ICPC 银川网络赛 D. Take Your Seat (疯子坐飞机问题)
Duha decided to have a trip to Singapore by plane.
The airplane had nn seats numbered from 11 to nn, and nn passengers including Duha which were also counted from 11 to nn. The passenger with number ii held the ticket corresponding to the seat with number ii, and Duha was the number 11 passenger.
All passengers got on the plane in the order of their numbers from 11 to nn. However, before they got on the plane Duha lost his ticket (and Duha was the only passenger who lost the ticket), so he could not take his seat correctly. He decided to take a seat randomly. And after that, while a passenger got on the plane and found that his/her seat has been occupied, he/she selected an empty seat randomly as well. A passenger except Duha selected the seat displayed in his/her ticket if it had not been occupied by someone else.
The first problem you are asked to calculate in this problem is the probability of the last passenger to get on the plane that took his/her correct seat.
Several days later, Duha finished his travel in Singapore, and he had a great time.
On the way back, he lost his ticket again. And at this time, the airplane had mm seats numbered from 11 to mm, and mm passengers including Duha which were also counted from 11 to mm. The passenger with number ii held the ticket corresponding to the seat with number ii, and Duha was the number 11 passenger as well.
The difference was that: all passengers got on the plane in a random order (which was any one of the mm! different orders with the same chance). Similarly, Duha or a passenger who found his/her seat had been occupied selected an empty seat randomly.
The second problem you are asked to calculate in this problem is the probability of the last passenger to get on the plane that took his/her right seat on the return trip.
Input
The input contains several test cases, and the first line is a positive integer TT indicating the number of test cases which is up to 5050.
For each test case, a line contains two integers nn and m (1 \le n, m \le 50)m(1≤n,m≤50).
Output
For each test case, output a line containing Case #x: y z, where xx is the test case number starting from 11, yy is the answer of the first problem, and zz is the answer of the second problem. Both of yy and zz are rounded to 66 places, and we guarantee that their 77-th places after the decimal point in the precise answer would not be 44 or 55.
输出时每行末尾的多余空格,不影响答案正确性
样例输入复制
1
2 3
样例输出复制
Case #1: 0.500000 0.666667
这个题,一场比赛下来,有人跑过来跟我说容斥定理,又有什么DFS的,这些全是抄题解,这不就是一个推公式的题目吗?队友推了很久,最后在一群人的指点江山下,自己推出公式;这个题就是一个疯子坐飞机概率问题:https://www.zhihu.com/question/35950050/answer/65272204
先讨论第一问,第一问的话,当这个呆瓜坐下,无论前N-1个怎么做,最后一个上来的人面对的是一个独立问题,是坐对或坐错,我们论证一下:
1、当只有两个人的时候,呆瓜是第一个,他有两种选择,作对坐不对,那么对于最后一个人,也有两种情况,坐对,坐错。
2、当只有三个人的时候,呆瓜是第一个,那么他有三种选择,1,2,3那么他有1/3的几率坐对,而只有他蠢,他坐对了,其他人都坐对了,在考虑其余2/3,那么对于当第一个人做了第二个人的位置,那么第二个人上来之后可以做第一个人的位置,也可以坐第三个人的位置,那么第三个人坐对的概率是1/2,在讨论,当第一个人做了第三个人的位置时,第三个人一定做不到自己的位置上,那么坐对坐不对的情况都是1/3+1/6=1/2。
3、那么当有四个人的时候,他坐在对于他做的四种情况都能推导到比他更低的人数的情况,而对于每种情况都是1/2,
那么第一问的答案永远都是1/2,那么我们考虑第二问,除了这个呆瓜之外,在他之前上来的肯定都坐对了,那么转化为第一种情况,除了一个人的时候是1之外,除了1/2之外还有第三种情况,是呆瓜最后上来,别人都坐对了,那他肯定也做对了,就是1,所以这个题的话就是有1/N的几率呆瓜最后上来,有N-1/N的情况是他在之前上来1/2的情况,那么答案即为
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<iomanip>
using namespace std;
#define LL long long
#define MAXN 1000100
int main()
{
int t,n,m,p=1;
cin>>t;
while(t--)
{
cin>>n>>m;
cout<<"Case #"<<p++<<": ";
if(n==1)
cout<<"1.000000"<<' ';
else
cout<<"0.500000"<<' ';
cout<<fixed<<setprecision(6)<<(m+1)*1.0/(2*m)<<endl;
}
2019 ICPC 银川网络赛 D. Take Your Seat (疯子坐飞机问题)的更多相关文章
- 2019 ICPC 银川网络赛 H. Fight Against Monsters
It is my great honour to introduce myself to you here. My name is Aloysius Benjy Cobweb Dartagnan Eg ...
- 2019 ICPC 银川网络赛 F-Moving On (卡Cache)
Firdaws and Fatinah are living in a country with nn cities, numbered from 11 to nn. Each city has a ...
- 2019 ICPC 南昌网络赛
2019 ICPC 南昌网络赛 比赛时间:2019.9.8 比赛链接:The 2019 Asia Nanchang First Round Online Programming Contest 总结 ...
- 2019 ICPC上海网络赛 A 题 Lightning Routing I (动态维护树的直径)
题目: 给定一棵树, 带边权. 现在有2种操作: 1.修改第i条边的权值. 2.询问u到其他一个任意点的最大距离是多少. 题解: 树的直径可以通过两次 dfs() 的方法求得.换句话说,到任意点最远的 ...
- 2019 ICPC 沈阳网络赛 J. Ghh Matin
Problem Similar to the strange ability of Martin (the hero of Martin Martin), Ghh will random occurr ...
- 2019 ICPC 南昌网络赛I:Yukino With Subinterval(CDQ分治)
Yukino With Subinterval Yukino has an array a_1, a_2 \cdots a_na1,a2⋯*a**n*. As a tsundere girl, Yuk ...
- 2019 ICPC南昌网络赛 B题
英雄灭火问题忽略了一点丫 一个超级源点的事情,需要考虑周全丫 2 #include<cstdio> #include<cstring> #include<queue> ...
- 2019 ICPC 徐州网络赛 B.so easy (并查集)
计蒜客链接:https://nanti.jisuanke.com/t/41384 题目大意:给定n个数,从1到n排列,其中有q次操作,操作(1) 删除一个数字 // 操作(2)求这个数字之后第一个没有 ...
- 2019 ICPC徐州网络赛 E. XKC's basketball team(二分)
计蒜客题目链接:https://nanti.jisuanke.com/t/41387 题目大意:给定一组无序序列,从第一个数开始,求最远比这个数大m的数,与这个数之间相隔多少数字?如果没有输出-1,否 ...
随机推荐
- django-rest-framework视图和url
django-rest-framework视图 GenericView class GenericView(GenericAPIView): queryset = models.Role.object ...
- 浏览器判断兼容IE
很多时候IE浏览器的兼容性问题总是让人很头疼,或许是样式的或许是脚本的.总之因为IE的低版本问题会引发各种各样的问题出来. function isUnderIE10() {//IE 6,7,8,9 i ...
- React Native简史
诞生 React Native 诞生于 2013 年的 Facebook 内部黑客马拉松(hackathon): In the essence of Facebook’s hacker culture ...
- 刨根问底系列(1)——虚假唤醒(spurious wakeups)的原因以及在pthread_cond_wait、pthread_cond_singal中使用while的必要性
刨根问底之虚假唤醒 1. 概要 将会以下方式展开介绍: 什么是虚假唤醒 什么原因会导致虚假唤醒(两种原因) 为什么系统内核不从根本上解决虚假唤醒这个"bug"(两个原因) 开发者如 ...
- 如何利用 githob 上传自己的网站
如何搭建自己的网页是每个学前端伙伴不可缺少的一个过程,特意去看过很多如何搭建的教程,但都看不懂觉得很麻烦, 在慢慢的学习中接触到githob,发现了一个大宝藏(如果一个code都不认识githob 那 ...
- break与continue对比
- break 用来终止循环 - continue 用来跳出当前循环,继续下次循环 // 求1到100之间所有不能被3整除的整数的第一个大于2000的和 var sum = 0; for(var i= ...
- stand up meeting 11/26/2015
part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云 完成UI简易界面布局设计:在UI部分实现释义数据格式转换的实现和测试,使得其与外界接口均标准化为string,具体实现见 ...
- python数据分析工具——Pandas、StatsModels、Scikit-Learn
Pandas Pandas是 Python下最强大的数据分析和探索工具.它包含高级的数据结构和精巧的工具,使得在 Python中处理数据非常快速和简单. Pandas构建在 Numpy之上,它使得以 ...
- python安装pil库,操作流程以及安装中出现的问题。
0.用管理员方式打开cmd窗口. 1.跳转到python对应目录 比我: ***或者直接在该路径下输入cmd直接跳转.**** 例如: 直接回车搞定!! 2.输入 pip install pillow ...
- 带你玩linux集成环境
据我现在知道的,在linux一键部署集成环境的应用有: “宝塔面板” “LNMP" "XRDP" 参考:http://www.ampnmp.com/ 具体什么安装就直接百 ...