Duha decided to have a trip to Singapore by plane.

The airplane had nn seats numbered from 11 to nn, and nn passengers including Duha which were also counted from 11 to nn. The passenger with number ii held the ticket corresponding to the seat with number ii, and Duha was the number 11 passenger.

All passengers got on the plane in the order of their numbers from 11 to nn. However, before they got on the plane Duha lost his ticket (and Duha was the only passenger who lost the ticket), so he could not take his seat correctly. He decided to take a seat randomly. And after that, while a passenger got on the plane and found that his/her seat has been occupied, he/she selected an empty seat randomly as well. A passenger except Duha selected the seat displayed in his/her ticket if it had not been occupied by someone else.

The first problem you are asked to calculate in this problem is the probability of the last passenger to get on the plane that took his/her correct seat.

Several days later, Duha finished his travel in Singapore, and he had a great time.

On the way back, he lost his ticket again. And at this time, the airplane had mm seats numbered from 11 to mm, and mm passengers including Duha which were also counted from 11 to mm. The passenger with number ii held the ticket corresponding to the seat with number ii, and Duha was the number 11 passenger as well.

The difference was that: all passengers got on the plane in a random order (which was any one of the mm! different orders with the same chance). Similarly, Duha or a passenger who found his/her seat had been occupied selected an empty seat randomly.

The second problem you are asked to calculate in this problem is the probability of the last passenger to get on the plane that took his/her right seat on the return trip.

Input

The input contains several test cases, and the first line is a positive integer TT indicating the number of test cases which is up to 5050.

For each test case, a line contains two integers nn and m (1 \le n, m \le 50)m(1≤n,m≤50).

Output

For each test case, output a line containing Case #x: y z, where xx is the test case number starting from 11, yy is the answer of the first problem, and zz is the answer of the second problem. Both of yy and zz are rounded to 66 places, and we guarantee that their 77-th places after the decimal point in the precise answer would not be 44 or 55.

输出时每行末尾的多余空格,不影响答案正确性

样例输入复制

1
2 3

样例输出复制

Case #1: 0.500000 0.666667

这个题,一场比赛下来,有人跑过来跟我说容斥定理,又有什么DFS的,这些全是抄题解,这不就是一个推公式的题目吗?队友推了很久,最后在一群人的指点江山下,自己推出公式;这个题就是一个疯子坐飞机概率问题:https://www.zhihu.com/question/35950050/answer/65272204

先讨论第一问,第一问的话,当这个呆瓜坐下,无论前N-1个怎么做,最后一个上来的人面对的是一个独立问题,是坐对或坐错,我们论证一下:

1、当只有两个人的时候,呆瓜是第一个,他有两种选择,作对坐不对,那么对于最后一个人,也有两种情况,坐对,坐错。

2、当只有三个人的时候,呆瓜是第一个,那么他有三种选择,1,2,3那么他有1/3的几率坐对,而只有他蠢,他坐对了,其他人都坐对了,在考虑其余2/3,那么对于当第一个人做了第二个人的位置,那么第二个人上来之后可以做第一个人的位置,也可以坐第三个人的位置,那么第三个人坐对的概率是1/2,在讨论,当第一个人做了第三个人的位置时,第三个人一定做不到自己的位置上,那么坐对坐不对的情况都是1/3+1/6=1/2。

3、那么当有四个人的时候,他坐在对于他做的四种情况都能推导到比他更低的人数的情况,而对于每种情况都是1/2,

那么第一问的答案永远都是1/2,那么我们考虑第二问,除了这个呆瓜之外,在他之前上来的肯定都坐对了,那么转化为第一种情况,除了一个人的时候是1之外,除了1/2之外还有第三种情况,是呆瓜最后上来,别人都坐对了,那他肯定也做对了,就是1,所以这个题的话就是有1/N的几率呆瓜最后上来,有N-1/N的情况是他在之前上来1/2的情况,那么答案即为 

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<iomanip>
using namespace std;
#define LL long long
#define MAXN 1000100
int main()
{
int t,n,m,p=1;
cin>>t;
while(t--)
{
cin>>n>>m;
cout<<"Case #"<<p++<<": ";
if(n==1)
cout<<"1.000000"<<' ';
else
cout<<"0.500000"<<' ';
cout<<fixed<<setprecision(6)<<(m+1)*1.0/(2*m)<<endl;
}

2019 ICPC 银川网络赛 D. Take Your Seat (疯子坐飞机问题)的更多相关文章

  1. 2019 ICPC 银川网络赛 H. Fight Against Monsters

    It is my great honour to introduce myself to you here. My name is Aloysius Benjy Cobweb Dartagnan Eg ...

  2. 2019 ICPC 银川网络赛 F-Moving On (卡Cache)

    Firdaws and Fatinah are living in a country with nn cities, numbered from 11 to nn. Each city has a ...

  3. 2019 ICPC 南昌网络赛

    2019 ICPC 南昌网络赛 比赛时间:2019.9.8 比赛链接:The 2019 Asia Nanchang First Round Online Programming Contest 总结 ...

  4. 2019 ICPC上海网络赛 A 题 Lightning Routing I (动态维护树的直径)

    题目: 给定一棵树, 带边权. 现在有2种操作: 1.修改第i条边的权值. 2.询问u到其他一个任意点的最大距离是多少. 题解: 树的直径可以通过两次 dfs() 的方法求得.换句话说,到任意点最远的 ...

  5. 2019 ICPC 沈阳网络赛 J. Ghh Matin

    Problem Similar to the strange ability of Martin (the hero of Martin Martin), Ghh will random occurr ...

  6. 2019 ICPC 南昌网络赛I:Yukino With Subinterval(CDQ分治)

    Yukino With Subinterval Yukino has an array a_1, a_2 \cdots a_na1,a2⋯*a**n*. As a tsundere girl, Yuk ...

  7. 2019 ICPC南昌网络赛 B题

    英雄灭火问题忽略了一点丫 一个超级源点的事情,需要考虑周全丫 2 #include<cstdio> #include<cstring> #include<queue> ...

  8. 2019 ICPC 徐州网络赛 B.so easy (并查集)

    计蒜客链接:https://nanti.jisuanke.com/t/41384 题目大意:给定n个数,从1到n排列,其中有q次操作,操作(1) 删除一个数字 // 操作(2)求这个数字之后第一个没有 ...

  9. 2019 ICPC徐州网络赛 E. XKC's basketball team(二分)

    计蒜客题目链接:https://nanti.jisuanke.com/t/41387 题目大意:给定一组无序序列,从第一个数开始,求最远比这个数大m的数,与这个数之间相隔多少数字?如果没有输出-1,否 ...

随机推荐

  1. Linux命文件与目录属性

    一.linux系统中文件标志 d ===> 目录 - ===> 文件 l ===> 连接文件 b ===> 可供存储设备文件 c ===> 串形端口设备文件(鼠标,键盘) ...

  2. ArrayList、LinkedList和Vector源码分析

    ArrayList.LinkedList和Vector源码分析 ArrayList ArrayList是一个底层使用数组来存储对象,但不是线程安全的集合类 ArrayList的类结构关系 public ...

  3. Linux下删除大量文件效率对比

    来自公众号:马哥Linux运维 今天我们来测试一下Linux下面删除大量文件的效率. 首先建立50万个文件 $ test   for i in $(seq 1 500000);do echo text ...

  4. B - Bash and a Tough Math Puzzle CodeForces - 914D (线段树的巧妙应用)

    题目大意:当输入2时,将p处的点的值修改为x, 当输入1时,判断区间[L,R]的gcd是否几乎正确,几乎正确的定义是最多修改一个数,使得区间[L,R]的gcd为x. 题解:用线段树维护一个gcd数组, ...

  5. 一起了解 .Net Foundation 项目 No.24

    .Net 基金会中包含有很多优秀的项目,今天就和笔者一起了解一下其中的一些优秀作品吧. 中文介绍 中文介绍内容翻译自英文介绍,主要采用意译.如与原文存在出入,请以原文为准. Xamarin.Mobil ...

  6. [yii2] 实现所有action方法之前执行一段代码或者方法

    我做的是在执行任何方法之前,验证用户登陆状态! 其实就是在controller中写beforeaction()方法, 然后我的方案就是做一个基类,然后让你所有控制器继承你的基类, 如果控制器的基类用_ ...

  7. python之pymysql库连接mysql实现增、删、改、查

    安装第三方库pymysql 命令行cmd下通过pip install pymysql进行安装,安装完成后自行pip list可查看对应的版本信息 建立连接 1 #导入pymysql库 2 import ...

  8. 大数据MapReduce相关的运维题

    1.在集群节点中/usr/hdp/2.4.3.0-227/hadoop-mapreduce/目录下,存在一个案例 JAR 包 hadoop-mapreduce-examples.jar.运行 JAR ...

  9. Java IO 流 -- 转换流: InputStreamReader OutputStreamWriter

    java 中 转换流是以字符流的形式操作字节流,需要注意一下两点: 1.操作内容必须是纯文本 2.指定字符集避免乱码 操作控制台输入输出: try (BufferedReader br = new B ...

  10. caddy配置php-fpm

    特码的,谷歌又用不了了. 吐槽完毕,正文如下: caddy是一个用go语言开发的服务器,可用作web端. caddy本身支持 -conf caddyfile的配置 在命令行中的体现: caddy -c ...