2020-03-03 22:55:08

问题描述:

给定一个字符串数组 A,找到以 A 中每个字符串作为子字符串的最短字符串。

我们可以假设 A 中没有字符串是 A 中另一个字符串的子字符串。

示例 1:

输入:["alex","loves","leetcode"]
输出:"alexlovesleetcode"
解释:"alex","loves","leetcode" 的所有排列都会被接受。

示例 2:

输入:["catg","ctaagt","gcta","ttca","atgcatc"]
输出:"gctaagttcatgcatc"

提示:

1 <= A.length <= 12
1 <= A[i].length <= 20

问题求解:

解法一:暴力求解

首先我们要明确的就是,本题可以转化成图论的题目,就是在一个图中要遍历所有的节点一次,最后路径的最小值是多少。(这里和TSP略有不同,即我们不需要返回起始节点)

暴力求解,可以理解为全排列,只不过我们做了一些剪枝操作进行了加速。

时间复杂度:O(n!)

    int res = (int)1e9;
List<Integer> path;
int n; public String shortestSuperstring(String[] A) {
n = A.length;
int[][] graph = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = Math.min(A[i].length(), A[j].length()); k >= 0; k--) {
if (A[j].substring(0, k).equals(A[i].substring(A[i].length() - k))) {
graph[i][j] = A[j].length() - k;
break;
}
}
}
}
helper(A, graph, 0, 0, 0, new ArrayList<>());
StringBuffer sb = new StringBuffer();
for (int i = 0; i < n; i++) {
int node = path.get(i);
String s = A[node];
if (i == 0) sb.append(s);
else sb.append(s.substring(s.length() - graph[path.get(i - 1)][node]));
}
return sb.toString();
} private void helper(String[] A, int[][] graph, int k, int used, int curr, List<Integer> curr_p) {
if (curr >= res) return;
if (k == n) {
res = curr;
path = new ArrayList<>(curr_p);
return;
}
for (int i = 0; i < n; i++) {
if ((used & (1 << i)) != 0) continue;
curr_p.add(i);
helper(A, graph, k + 1, used | (1 << i), k == 0 ? A[i].length() : curr + graph[curr_p.get(curr_p.size() - 2)][i], curr_p);
curr_p.remove(curr_p.size() - 1);
}
}

  

解法二:DP

dp[s][i] : 当前访问过的节点状态为s,且以i为结尾的最短路径。

init :

dp[1 << i][i] = A[i].length()

transition :

对于dp[s][i]我们需要去枚举所有的parent节点,计算得到当前的最小值。

dp[s][i] = min{dp[s - (1 << i)][j] + graph[j][i]) 将A[i]追加到A[j]后面。

时间复杂度:O(2 ^n * n ^ 2)    同TSP问题

    public String shortestSuperstring(String[] A) {
int n = A.length;
int[][] graph = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = Math.min(A[i].length(), A[j].length()); k >= 0; k--) {
if (A[j].substring(0, k).equals(A[i].substring(A[i].length() - k))) {
graph[i][j] = A[j].length() - k;
break;
}
}
}
}
int[][] dp = new int[1 << n][n];
int[][] parent = new int[1 << n][n];
for (int i = 0; i < 1 << n; i++) {
Arrays.fill(dp[i], (int)1e9);
Arrays.fill(parent[i], -1);
}
for (int i = 0; i < n; i++) dp[1 << i][i] = A[i].length();
for (int s = 1; s < 1 << n; s++) {
for (int i = 0; i < n; i++) {
if ((s & (1 << i)) == 0) continue;
int prev = s - (1 << i);
for (int j = 0; j < n; j++) {
if (dp[prev][j] + graph[j][i] < dp[s][i]) {
dp[s][i] = dp[prev][j] + graph[j][i];
parent[s][i] = j;
}
}
}
}
int curr = -1;
int min = (int)1e9;
for (int i = 0; i < n; i++) {
if (dp[(1 << n) - 1][i] < min) {
min = dp[(1 << n) - 1][i];
curr = i;
}
} int s = (1 << n) - 1;
String res = "";
while (s > 0) {
int prev = parent[s][curr];
if (prev == -1) res = A[curr] + res;
else res = A[curr].substring(A[curr].length() - graph[prev][curr]) + res;
s &= ~(1 << curr);
curr = prev;
} return res;
}

  

动态规划-TSP问题-最短超级串的更多相关文章

  1. [Swift]LeetCode943. 最短超级串 | Find the Shortest Superstring

    Given an array A of strings, find any smallest string that contains each string in A as a substring. ...

  2. [bzoj1195][HNOI2006]最短母串_动态规划_状压dp

    最短母串 bzoj-1195 HNOI-2006 题目大意:给一个包含n个字符串的字符集,求一个字典序最小的字符串使得字符集中所有的串都是该串的子串. 注释:$1\le n\le 12$,$1\le ...

  3. 【33.28%】【BZOJ 1195】[HNOI2006]最短母串

    Time Limit: 10 Sec  Memory Limit: 32 MB Submit: 1208  Solved: 402 [Submit][Status][Discuss] Descript ...

  4. bzoj 1195: [HNOI2006]最短母串 爆搜

    1195: [HNOI2006]最短母串 Time Limit: 10 Sec  Memory Limit: 32 MBSubmit: 894  Solved: 288[Submit][Status] ...

  5. 2782: [HNOI2006]最短母串

    2782: [HNOI2006]最短母串 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3  Solved: 2[Submit][Status][Web ...

  6. BZOJ1195[HNOI2006]最短母串——AC自动机+BFS+状态压缩

    题目描述 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串. 输入 第一行是一个正整数n(n<=12),表示给定的字符串的 ...

  7. BZOJ 1195: [HNOI2006]最短母串

    1195: [HNOI2006]最短母串 Time Limit: 10 Sec  Memory Limit: 32 MBSubmit: 1346  Solved: 450[Submit][Status ...

  8. P2322 [HNOI2006]最短母串问题

    P2322 [HNOI2006]最短母串问题 AC自动机+bfs 题目要求:在AC自动机建的Trie图上找到一条最短链,包含所有带结尾标记的点 因为n<12,所以我们可以用二进制保存状态:某个带 ...

  9. [HNOI2006]最短母串问题

    题目大意:给定一个字符串集,求一个最短字串,使得该集合内的串都是该串的一个子串 算法:AC自动机+最短路+状压DP 注意空间限制 #include"cstdio" #include ...

随机推荐

  1. Redis-输入输出缓冲区

    一.client list id:客户端连接的唯一标识,这个id是随着Redis的连接自增的,重启Redis后会重置为0addr:客户端连接的ip和端口fd:socket的文件描述符,与lsof命令结 ...

  2. 【转载】checkbox实现全选/取消全选

    比较简单.好理解的写法,做个备注.查看请前往原地址:http://blog.csdn.net/graceup/article/details/46650781 <html> <bod ...

  3. Java入门教程八(面向对象)

    对象概念 一切皆是对象.把现实世界中的对象抽象地体现在编程世界中,一个对象代表了某个具体的操作.一个个对象最终组成了完整的程序设计,这些对象可以是独立存在的,也可以是从别的对象继承过来的.对象之间通过 ...

  4. 达拉草201771010105《面向对象程序设计(java)》第九周学习总结

    达拉草201771010105<面向对象程序设计(java)>第九周学习总结 实验九异常.断言与日志 实验时间 2018-10-25 1.实验目的与要求 (1) 掌握java异常处理技术: ...

  5. SpringCloud入门(六): Hystrix监控

    Hystrix.stream 监控 <!--. 配置pom文件,引入actuator包--> <dependency> <groupId>org.springfra ...

  6. golang在debian下不能用sudo进行使用的问题

    sudo ln -s /usr/local/go/bin/go /usr/bin/go 然后就ok了. 去查了下这两个路径的差别,也没查出什么.只是说/usr/bin 是系统预装所在的路径.

  7. 7-44 jmu-python-区间数之和 (10 分)

    输入一个区间,计算里面能被3整除或被5整除的数和. 输入格式: 每行输入一个数据,代表区间左界和右界.区间包含左界和右界.数据必须是整数. 输出格式: 满足条件数和. 输入样例: 2 10 输出样例: ...

  8. Asp.Net Core Endpoint 终结点路由之中间件应用

    一.概述 这篇文章主要分享Endpoint 终结点路由的中间件的应用场景及实践案例,不讲述其工作原理,如果需要了解工作原理的同学, 可以点击查看以下两篇解读文章: Asp.Net Core EndPo ...

  9. All In One

    set1 https://github.com/tianhang-f... set2 https://github.com/tianhang/F... set3https://github.com/t ...

  10. JavaScript两道例题

    1.有一个卡车司机肇事后想逃跑,但是被三个人看见其车牌号码,但是没有看全.一号说:车牌的前两位是一样的,二号说:车牌的后两位是一 样的,但是与前两位不一样,三号说:车牌是一个数字的平方,请计算车辆号牌 ...