Spark mlib的本地向量
Spark mlib的本地向量有两种:
DenseVctor :稠密向量 其创建方式 Vector.dense(数据)
SparseVector :稀疏向量 其创建方式有两种:
方法一:Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组)
方法二:Vector.sparse(向量长度,(索引,数值),(索引,数值),(索引,数值),...(索引,数值))
示例:
比如向量(1,0,3,4)的创建有三种方法:
稠密向量:直接Vectors.dense(1,0,3,4)
稀疏向量:
方法一:Vector.sparse(4,(0,2,3),(1,3,4))
(0,2,3) 表示该向量的第0个,第2个,第3个位置,(1,3,4) 表示(0,2,3)位置对应的数值分别为1,3,4
方法二:Vector.sparse(4,(0,1),(2,3),(3,4))
(0,1)就是(索引,数值)的形式。位置0的数值为1, 位置2的数值为3,位置3的数值为4。
所有本地向量都以org.apache.spark.mllib.linalg.Vector为基类,DenseVector和SparseVector分别是它的两个实现类,故推荐使用Vectors工具类下定义的工厂方法来创建本地向 量,请看如下实例(假设在Spark-shell中运行,下同):
scala>import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.linalg.{Vector, Vectors} // 创建一个稠密本地向量
scala> val dv: Vector = Vectors.dense(2.0, 0.0, 8.0)
dv: org.apache.spark.mllib.linalg.Vector = [2.0,0.0,8.0]
// 创建一个稀疏本地向量
// 方法第二个参数数组指定了非零元素的索引,而第三个参数数组则给定了非零元素值
scala> val sv1: Vector = Vectors.sparse(, Array(, ), Array(2.0, 8.0))
sv1: org.apache.spark.mllib.linalg.Vector = (,[,],[2.0,8.0])
// 另一种创建稀疏本地向量的方法
// 方法的第二个参数是一个序列,其中每个元素都是一个非零值的元组:(index,elem)
scala> val sv2: Vector = Vectors.sparse(, Seq((, 2.0), (, 8.0)))
sv2: org.apache.spark.mllib.linalg.Vector = (,[,],[2.0,8.0])
这里需要注意的是,Scala会默认引入scala.collection.immutable.Vector,我们要显式地引入org.apache.spark.mllib.linalg.Vector来使用MLlib提供的向量类型。
Spark mlib的本地向量的更多相关文章
- spark 稠密向量和稀疏向量
Spark mlib的本地向量有两种: DenseVctor :稠密向量 其创建方式 Vector.dense(数据) SparseVector :稀疏向量 其创建方式有两种: 方法一 ...
- Spark Mllib里的本地向量集(密集型数据集和稀疏型数据集概念、构成)(图文详解)
不多说,直接上干货! Local vector : 本地向量集 由两类构成:稀疏型数据集(spares)和密集型数据集(dense) (1).密集型数据集 例如一个向量数据(9,5,2,7),可以设 ...
- Spark MLib 数据类型
1. MLlib Apache Spark's scalable machine learning library, with APIs in Java, Scala and Python. 2. ...
- Spark MLib:梯度下降算法实现
声明:本文参考< 大数据:Spark mlib(三) GradientDescent梯度下降算法之Spark实现> 1. 什么是梯度下降? 梯度下降法(英语:Gradient descen ...
- Spark Mllib里的向量标签概念、构成(图文详解)
不多说,直接上干货! Labeled point: 向量标签 向量标签用于对Spark Mllib中机器学习算法的不同值做标记. 例如分类问题中,可以将不同的数据集分成若干份,以整数0.1.2,... ...
- Spark MLib完整基础入门教程
Spark MLib 在Spark下进行机器学习,必然无法离开其提供的MLlib框架,所以接下来我们将以本框架为基础进行实际的讲解.首先我们需要了解其中最基本的结构类型,即转换器.估计器.评估器和流水 ...
- Spark MLib 基本统计汇总 2
4. 假设检验 基础回顾: 假设检验,用于判断一个结果是否在统计上是显著的.这个结果是否有机会发生. 显著性检验 原假设与备择假设 常把一个要检验的假设记作 H0,称为原假设(或零假设) (null ...
- Spark MLib 基本统计汇总 1
1. 概括统计 summary statistics MLlib支持RDD[Vector]列式的概括统计,它通过调用 Statistics 的 colStats方法实现. colStats返回一个 ...
- 009 搭建Spark的maven本地windows开发环境以及测试
在看完下面的细节之后,就会发现,spark的开发,只需要hdfs加上带有scala的IDEA环境即可. 当run运行程序时,很快就可以运行结束. 为了可以看4040界面,需要将程序加上暂定程序,然后 ...
随机推荐
- The App Life Cycle & The Main Function
The App Life Cycle Apps are a sophisticated interplay between your custom code and the system framew ...
- win7环境中使用notepad++配置python IDE
1, 下载notepad++,并安装 http://notepad-plus-plus.org/download/v6.5.5.html 2, 下载python的win版本,并安装 https://w ...
- GoBelieve UseID及ImID方案
GoBelieve: imId = (appid + uid) IM 服务器用(appid + uid)imid做用户的唯一标示 imid是IM平台上沟通的凭证 客户端请求联系人列表后,会有对应uid ...
- 一点一点看JDK源码(一)Collection体系概览
一点一点看JDK源码(一)Collection体系概览 liuyuhang原创,未经允许进制转载 本文举例使用的是JDK8的API 目录:一点一点看JDK源码(〇) 1.综述 Collection为集 ...
- 【转载】JavaScript导出Excel
[转载]JavaScript导出Excel 原文地址 如果没有用到前端插件,也没有用到后台poi导出的话,用js导出也是一种方式.亲测可用. /** * 导出excel */ var idTmr; f ...
- 在java程序中使用JDBC连接mysql数据库
在java程序中我们时常会用到数据库中的数据或操作数据库中的数据,如果java程序没有和我们得数据库连接,就不能实现在java程序中直接操作数据库.使用jdbc就能将java程序和数据库连起来,此时我 ...
- Kaggle比赛总结
做完 Kaggle 比赛已经快五个月了,今天来总结一下,为秋招做个准备. 题目要求:根据主办方提供的超过 4 天约 2 亿次的点击数据,建立预测模型预测用户是否会在点击移动应用广告后下载应用程序. 数 ...
- rem和em的用法
1.rem转化为向素值的方法 rem单位转化为像素大小取决于根元素的字体大小,即HTML元素的字体大小,根元素字体大小乘以rem. 例:根元素的字体大小 16px,10rem 将等同于 160px,即 ...
- C# WebBrowser获取指定字符串的坐标
public void FindKeyWord(string keyWord) { WebBrowser wb = new WebBrowser(); foreach (HtmlElement ite ...
- Spring quantz--定时任务调度工具
1.在xml中交给spring管理的一些类 <bean id="cancelOrderJobDetail" class="org.springframework.s ...