Spark mlib的本地向量有两种:

DenseVctor :稠密向量 其创建方式 Vector.dense(数据)

SparseVector :稀疏向量 其创建方式有两种:

  方法一:Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组)

  方法二:Vector.sparse(向量长度,(索引,数值),(索引,数值),(索引,数值),...(索引,数值))

示例:

比如向量(1,0,3,4)的创建有三种方法:

稠密向量:直接Vectors.dense(1,0,3,4)

稀疏向量:

方法一:Vector.sparse(4,(0,2,3),(1,3,4))

(0,2,3) 表示该向量的第0个,第2个,第3个位置,(1,3,4) 表示(0,2,3)位置对应的数值分别为1,3,4

方法二:Vector.sparse(4,(0,1),(2,3),(3,4))

    (0,1)就是(索引,数值)的形式。位置0的数值为1, 位置2的数值为3,位置3的数值为4。

所有本地向量都以org.apache.spark.mllib.linalg.Vector为基类,DenseVectorSparseVector分别是它的两个实现类,故推荐使用Vectors工具类下定义的工厂方法来创建本地向  量,请看如下实例(假设在Spark-shell中运行,下同):

  1.  scala>import org.apache.spark.mllib.linalg.{Vector, Vectors}
    import org.apache.spark.mllib.linalg.{Vector, Vectors} // 创建一个稠密本地向量
    scala> val dv: Vector = Vectors.dense(2.0, 0.0, 8.0)
    dv: org.apache.spark.mllib.linalg.Vector = [2.0,0.0,8.0]
    // 创建一个稀疏本地向量
    // 方法第二个参数数组指定了非零元素的索引,而第三个参数数组则给定了非零元素值
    scala> val sv1: Vector = Vectors.sparse(, Array(, ), Array(2.0, 8.0))
    sv1: org.apache.spark.mllib.linalg.Vector = (,[,],[2.0,8.0])
    // 另一种创建稀疏本地向量的方法
    // 方法的第二个参数是一个序列,其中每个元素都是一个非零值的元组:(index,elem)
    scala> val sv2: Vector = Vectors.sparse(, Seq((, 2.0), (, 8.0)))
    sv2: org.apache.spark.mllib.linalg.Vector = (,[,],[2.0,8.0])

这里需要注意的是,Scala会默认引入scala.collection.immutable.Vector,我们要显式地引入org.apache.spark.mllib.linalg.Vector来使用MLlib提供的向量类型。

Spark mlib的本地向量的更多相关文章

  1. spark 稠密向量和稀疏向量

    Spark mlib的本地向量有两种: DenseVctor   :稠密向量   其创建方式   Vector.dense(数据) SparseVector :稀疏向量   其创建方式有两种: 方法一 ...

  2. Spark Mllib里的本地向量集(密集型数据集和稀疏型数据集概念、构成)(图文详解)

    不多说,直接上干货! Local  vector : 本地向量集 由两类构成:稀疏型数据集(spares)和密集型数据集(dense) (1).密集型数据集 例如一个向量数据(9,5,2,7),可以设 ...

  3. Spark MLib 数据类型

    1.  MLlib Apache Spark's scalable machine learning library, with APIs in Java, Scala and Python. 2. ...

  4. Spark MLib:梯度下降算法实现

    声明:本文参考< 大数据:Spark mlib(三) GradientDescent梯度下降算法之Spark实现> 1. 什么是梯度下降? 梯度下降法(英语:Gradient descen ...

  5. Spark Mllib里的向量标签概念、构成(图文详解)

    不多说,直接上干货! Labeled point: 向量标签 向量标签用于对Spark Mllib中机器学习算法的不同值做标记. 例如分类问题中,可以将不同的数据集分成若干份,以整数0.1.2,... ...

  6. Spark MLib完整基础入门教程

    Spark MLib 在Spark下进行机器学习,必然无法离开其提供的MLlib框架,所以接下来我们将以本框架为基础进行实际的讲解.首先我们需要了解其中最基本的结构类型,即转换器.估计器.评估器和流水 ...

  7. Spark MLib 基本统计汇总 2

    4. 假设检验 基础回顾: 假设检验,用于判断一个结果是否在统计上是显著的.这个结果是否有机会发生. 显著性检验 原假设与备择假设 常把一个要检验的假设记作 H0,称为原假设(或零假设) (null ...

  8. Spark MLib 基本统计汇总 1

    1.  概括统计 summary statistics MLlib支持RDD[Vector]列式的概括统计,它通过调用 Statistics 的 colStats方法实现. colStats返回一个  ...

  9. 009 搭建Spark的maven本地windows开发环境以及测试

    在看完下面的细节之后,就会发现,spark的开发,只需要hdfs加上带有scala的IDEA环境即可.  当run运行程序时,很快就可以运行结束. 为了可以看4040界面,需要将程序加上暂定程序,然后 ...

随机推荐

  1. The App Life Cycle & The Main Function

    The App Life Cycle Apps are a sophisticated interplay between your custom code and the system framew ...

  2. win7环境中使用notepad++配置python IDE

    1, 下载notepad++,并安装 http://notepad-plus-plus.org/download/v6.5.5.html 2, 下载python的win版本,并安装 https://w ...

  3. GoBelieve UseID及ImID方案

    GoBelieve: imId = (appid + uid) IM 服务器用(appid + uid)imid做用户的唯一标示 imid是IM平台上沟通的凭证 客户端请求联系人列表后,会有对应uid ...

  4. 一点一点看JDK源码(一)Collection体系概览

    一点一点看JDK源码(一)Collection体系概览 liuyuhang原创,未经允许进制转载 本文举例使用的是JDK8的API 目录:一点一点看JDK源码(〇) 1.综述 Collection为集 ...

  5. 【转载】JavaScript导出Excel

    [转载]JavaScript导出Excel 原文地址 如果没有用到前端插件,也没有用到后台poi导出的话,用js导出也是一种方式.亲测可用. /** * 导出excel */ var idTmr; f ...

  6. 在java程序中使用JDBC连接mysql数据库

    在java程序中我们时常会用到数据库中的数据或操作数据库中的数据,如果java程序没有和我们得数据库连接,就不能实现在java程序中直接操作数据库.使用jdbc就能将java程序和数据库连起来,此时我 ...

  7. Kaggle比赛总结

    做完 Kaggle 比赛已经快五个月了,今天来总结一下,为秋招做个准备. 题目要求:根据主办方提供的超过 4 天约 2 亿次的点击数据,建立预测模型预测用户是否会在点击移动应用广告后下载应用程序. 数 ...

  8. rem和em的用法

    1.rem转化为向素值的方法 rem单位转化为像素大小取决于根元素的字体大小,即HTML元素的字体大小,根元素字体大小乘以rem. 例:根元素的字体大小 16px,10rem 将等同于 160px,即 ...

  9. C# WebBrowser获取指定字符串的坐标

    public void FindKeyWord(string keyWord) { WebBrowser wb = new WebBrowser(); foreach (HtmlElement ite ...

  10. Spring quantz--定时任务调度工具

    1.在xml中交给spring管理的一些类 <bean id="cancelOrderJobDetail" class="org.springframework.s ...